{"title":"用广义Lefschetz顶针法进行量子宇宙学的蒙特卡罗研究","authors":"Chien-Yu Chou, Jun Nishimura","doi":"10.1007/JHEP05(2025)142","DOIUrl":null,"url":null,"abstract":"<p>Quantum cosmology aims at elucidating the beginning of our Universe. Back in early 80’s, Vilenkin and Hartle-Hawking put forward the “tunneling from nothing” and “no boundary” proposals. Recently there has been renewed interest in this subject from the viewpoint of defining the oscillating path integral for Lorentzian quantum gravity using the Picard-Lefschetz theory. Aiming at going beyond the mini-superspace and saddle-point approximations, we perform Monte Carlo calculations using the generalized Lefschetz thimble method to overcome the sign problem. In particular, we confirm that either the Vilenkin or the Hartle-Hawking saddle point becomes relevant if one uses the Robin boundary condition depending on its parameter. We also clarify some fundamental issues in quantum cosmology, such as an issue related to the integration domain of the lapse function.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)142.pdf","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo studies of quantum cosmology by the generalized Lefschetz thimble method\",\"authors\":\"Chien-Yu Chou, Jun Nishimura\",\"doi\":\"10.1007/JHEP05(2025)142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum cosmology aims at elucidating the beginning of our Universe. Back in early 80’s, Vilenkin and Hartle-Hawking put forward the “tunneling from nothing” and “no boundary” proposals. Recently there has been renewed interest in this subject from the viewpoint of defining the oscillating path integral for Lorentzian quantum gravity using the Picard-Lefschetz theory. Aiming at going beyond the mini-superspace and saddle-point approximations, we perform Monte Carlo calculations using the generalized Lefschetz thimble method to overcome the sign problem. In particular, we confirm that either the Vilenkin or the Hartle-Hawking saddle point becomes relevant if one uses the Robin boundary condition depending on its parameter. We also clarify some fundamental issues in quantum cosmology, such as an issue related to the integration domain of the lapse function.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)142.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)142\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)142","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Monte Carlo studies of quantum cosmology by the generalized Lefschetz thimble method
Quantum cosmology aims at elucidating the beginning of our Universe. Back in early 80’s, Vilenkin and Hartle-Hawking put forward the “tunneling from nothing” and “no boundary” proposals. Recently there has been renewed interest in this subject from the viewpoint of defining the oscillating path integral for Lorentzian quantum gravity using the Picard-Lefschetz theory. Aiming at going beyond the mini-superspace and saddle-point approximations, we perform Monte Carlo calculations using the generalized Lefschetz thimble method to overcome the sign problem. In particular, we confirm that either the Vilenkin or the Hartle-Hawking saddle point becomes relevant if one uses the Robin boundary condition depending on its parameter. We also clarify some fundamental issues in quantum cosmology, such as an issue related to the integration domain of the lapse function.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).