Marta Santos, Beatriz Sampaio, Marco S. Reis, Susana Alarico, Paula Ferreira, Marcos Mariz
{"title":"葡萄糖基聚氨酯泡沫系统筛选与优化的质量设计方法","authors":"Marta Santos, Beatriz Sampaio, Marco S. Reis, Susana Alarico, Paula Ferreira, Marcos Mariz","doi":"10.1007/s10924-025-03555-y","DOIUrl":null,"url":null,"abstract":"<div><p>Sugar-based polyurethane (PU) foams represent an important advancement in structured materials offering a more sustainable alternative to traditional PU foams derived from petro-based polyols. These PU foams can hold particular importance in fields such as construction, packaging, biomedical materials, and medical devices. Hitherto, the development relies on a trial-and-error basis or, at most, by changing one-factor-at-a-time (OFAT). Unfortunately, these methods are inefficient and prone to miss the intended goals. In this study, we apply a Quality by Design (QbD) strategy, integrating systematic experimental design and data-driven approaches, to optimize sugar-based PU foam formulations for integration into a pathogen-monitoring device and identify key factors affecting their properties. The effects of surfactant, water, catalyst, chain extender, and isocyanate concentrations were evaluated using statistical design of experiments (DoE), and the amount of water was identified as the most influential factor. An optimized formulation was obtained with 0.58% (w/w) water, 5.69% (w/w) surfactant, and 34.26% (w/w) toluene diisocyanate (TDI), with butanediol excluded due to its minor impact on foam’s performance and the water being the most impactful factor. This optimized formulation was synthesized and validated with the final material being able to absorb liquids, support capillary flow, and maintain physical integrity and glucose content. This approach enabled the tailored development of sugar-based PU foams to meet the specific application requirements.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 6","pages":"2672 - 2683"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-025-03555-y.pdf","citationCount":"0","resultStr":"{\"title\":\"A Quality by Design Approach for the Systematic Screening and Optimization of Glucose-Based Polyurethane Foams\",\"authors\":\"Marta Santos, Beatriz Sampaio, Marco S. Reis, Susana Alarico, Paula Ferreira, Marcos Mariz\",\"doi\":\"10.1007/s10924-025-03555-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sugar-based polyurethane (PU) foams represent an important advancement in structured materials offering a more sustainable alternative to traditional PU foams derived from petro-based polyols. These PU foams can hold particular importance in fields such as construction, packaging, biomedical materials, and medical devices. Hitherto, the development relies on a trial-and-error basis or, at most, by changing one-factor-at-a-time (OFAT). Unfortunately, these methods are inefficient and prone to miss the intended goals. In this study, we apply a Quality by Design (QbD) strategy, integrating systematic experimental design and data-driven approaches, to optimize sugar-based PU foam formulations for integration into a pathogen-monitoring device and identify key factors affecting their properties. The effects of surfactant, water, catalyst, chain extender, and isocyanate concentrations were evaluated using statistical design of experiments (DoE), and the amount of water was identified as the most influential factor. An optimized formulation was obtained with 0.58% (w/w) water, 5.69% (w/w) surfactant, and 34.26% (w/w) toluene diisocyanate (TDI), with butanediol excluded due to its minor impact on foam’s performance and the water being the most impactful factor. This optimized formulation was synthesized and validated with the final material being able to absorb liquids, support capillary flow, and maintain physical integrity and glucose content. This approach enabled the tailored development of sugar-based PU foams to meet the specific application requirements.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 6\",\"pages\":\"2672 - 2683\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10924-025-03555-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03555-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03555-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A Quality by Design Approach for the Systematic Screening and Optimization of Glucose-Based Polyurethane Foams
Sugar-based polyurethane (PU) foams represent an important advancement in structured materials offering a more sustainable alternative to traditional PU foams derived from petro-based polyols. These PU foams can hold particular importance in fields such as construction, packaging, biomedical materials, and medical devices. Hitherto, the development relies on a trial-and-error basis or, at most, by changing one-factor-at-a-time (OFAT). Unfortunately, these methods are inefficient and prone to miss the intended goals. In this study, we apply a Quality by Design (QbD) strategy, integrating systematic experimental design and data-driven approaches, to optimize sugar-based PU foam formulations for integration into a pathogen-monitoring device and identify key factors affecting their properties. The effects of surfactant, water, catalyst, chain extender, and isocyanate concentrations were evaluated using statistical design of experiments (DoE), and the amount of water was identified as the most influential factor. An optimized formulation was obtained with 0.58% (w/w) water, 5.69% (w/w) surfactant, and 34.26% (w/w) toluene diisocyanate (TDI), with butanediol excluded due to its minor impact on foam’s performance and the water being the most impactful factor. This optimized formulation was synthesized and validated with the final material being able to absorb liquids, support capillary flow, and maintain physical integrity and glucose content. This approach enabled the tailored development of sugar-based PU foams to meet the specific application requirements.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.