熔融盐Mg2+/Mg双功能体系促进低温生物质衍生碳石墨化

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-03-22 DOI:10.1007/s11581-025-06235-y
Fan Wang, Yuxin Wang, Ziheng Guan, Junjie Wei, Shengliang He, Zhen Zhong, Hao Chen, Peizhong Feng
{"title":"熔融盐Mg2+/Mg双功能体系促进低温生物质衍生碳石墨化","authors":"Fan Wang,&nbsp;Yuxin Wang,&nbsp;Ziheng Guan,&nbsp;Junjie Wei,&nbsp;Shengliang He,&nbsp;Zhen Zhong,&nbsp;Hao Chen,&nbsp;Peizhong Feng","doi":"10.1007/s11581-025-06235-y","DOIUrl":null,"url":null,"abstract":"<div><p>The development of low-temperature graphitization methods for biomass-derived carbon is critical for sustainable lithium-ion battery anodes. Herein, we propose a MgCl<sub>2</sub>–NaCl–KCl molten salt system exploiting the bifunctional role of Mg<sup>2+</sup>/Mg to achieve graphitization at 750 °C. The strong oxygen affinity of Mg<sup>2+</sup> synergizes with electrochemical polarization to rapidly deoxygenate carbon surfaces, while Mg deposition catalyzes the conversion of SiO<sub>2</sub> impurities to conductive SiC (via SiO<sub>2</sub> + 2 Mg → Si + 2MgO; Si + C → SiC) and promotes carbon rearrangement. The resulting graphite/SiC composite exhibits enhanced crystallinity (27% graphitization degree) and electrochemical performance, delivering a capacity of 198 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and retaining 70.2% capacity after 6000 cycles. In summary, this study fully exploited the strong bonding capability of Mg<sup>2+</sup> with oxygen and the reduction and catalytic properties of deposited Mg. This dual-functional role not only significantly reduced the required temperature for the reaction process (750 °C) but also maintained the graphitization process of biomass-derived carbon at high temperatures (&gt; 750 °C). This method provides a low-cost, low-energy-consumption pathway for the high-value-added application of biomass-derived hard carbon materials in lithium-ion battery graphite anodes. </p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 5","pages":"4421 - 4430"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molten salt Mg2+/Mg bifunctional system for enhancing graphitization of low-temperature biomass-derived carbon\",\"authors\":\"Fan Wang,&nbsp;Yuxin Wang,&nbsp;Ziheng Guan,&nbsp;Junjie Wei,&nbsp;Shengliang He,&nbsp;Zhen Zhong,&nbsp;Hao Chen,&nbsp;Peizhong Feng\",\"doi\":\"10.1007/s11581-025-06235-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of low-temperature graphitization methods for biomass-derived carbon is critical for sustainable lithium-ion battery anodes. Herein, we propose a MgCl<sub>2</sub>–NaCl–KCl molten salt system exploiting the bifunctional role of Mg<sup>2+</sup>/Mg to achieve graphitization at 750 °C. The strong oxygen affinity of Mg<sup>2+</sup> synergizes with electrochemical polarization to rapidly deoxygenate carbon surfaces, while Mg deposition catalyzes the conversion of SiO<sub>2</sub> impurities to conductive SiC (via SiO<sub>2</sub> + 2 Mg → Si + 2MgO; Si + C → SiC) and promotes carbon rearrangement. The resulting graphite/SiC composite exhibits enhanced crystallinity (27% graphitization degree) and electrochemical performance, delivering a capacity of 198 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and retaining 70.2% capacity after 6000 cycles. In summary, this study fully exploited the strong bonding capability of Mg<sup>2+</sup> with oxygen and the reduction and catalytic properties of deposited Mg. This dual-functional role not only significantly reduced the required temperature for the reaction process (750 °C) but also maintained the graphitization process of biomass-derived carbon at high temperatures (&gt; 750 °C). This method provides a low-cost, low-energy-consumption pathway for the high-value-added application of biomass-derived hard carbon materials in lithium-ion battery graphite anodes. </p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 5\",\"pages\":\"4421 - 4430\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06235-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06235-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物质碳低温石墨化方法的发展是可持续锂离子电池阳极的关键。在此,我们提出了一种MgCl2-NaCl-KCl熔盐体系,利用Mg2+/Mg的双功能作用,在750°C下实现石墨化。Mg2+的强氧亲和性与电化学极化协同作用使碳表面快速脱氧,而Mg沉积催化SiO2杂质转化为导电SiC(通过SiO2 + 2mg→Si + 2MgO;Si + C→SiC),促进碳重排。结果表明,石墨/SiC复合材料的结晶度(石墨化程度为27%)和电化学性能均有所提高,在0.1 a g−1的电压下可提供198 mAh g−1的容量,在6000次循环后仍能保持70.2%的容量。综上所述,本研究充分利用了Mg2+与氧的强键合能力和沉积Mg的还原催化性能。这种双功能作用不仅显著降低了反应过程所需的温度(750℃),而且保持了生物质衍生碳在高温(> 750℃)下的石墨化过程。该方法为生物质硬碳材料在锂离子电池石墨阳极中的高附加值应用提供了低成本、低能耗的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molten salt Mg2+/Mg bifunctional system for enhancing graphitization of low-temperature biomass-derived carbon

The development of low-temperature graphitization methods for biomass-derived carbon is critical for sustainable lithium-ion battery anodes. Herein, we propose a MgCl2–NaCl–KCl molten salt system exploiting the bifunctional role of Mg2+/Mg to achieve graphitization at 750 °C. The strong oxygen affinity of Mg2+ synergizes with electrochemical polarization to rapidly deoxygenate carbon surfaces, while Mg deposition catalyzes the conversion of SiO2 impurities to conductive SiC (via SiO2 + 2 Mg → Si + 2MgO; Si + C → SiC) and promotes carbon rearrangement. The resulting graphite/SiC composite exhibits enhanced crystallinity (27% graphitization degree) and electrochemical performance, delivering a capacity of 198 mAh g−1 at 0.1 A g−1 and retaining 70.2% capacity after 6000 cycles. In summary, this study fully exploited the strong bonding capability of Mg2+ with oxygen and the reduction and catalytic properties of deposited Mg. This dual-functional role not only significantly reduced the required temperature for the reaction process (750 °C) but also maintained the graphitization process of biomass-derived carbon at high temperatures (> 750 °C). This method provides a low-cost, low-energy-consumption pathway for the high-value-added application of biomass-derived hard carbon materials in lithium-ion battery graphite anodes. 

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信