含有Na2HPO4和石墨烯纳米片的增强无机(SP26)相变材料用于潜热储存

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Allan Takudzwa Muzhanje, Hamdy Hassan
{"title":"含有Na2HPO4和石墨烯纳米片的增强无机(SP26)相变材料用于潜热储存","authors":"Allan Takudzwa Muzhanje,&nbsp;Hamdy Hassan","doi":"10.1007/s10973-024-13958-z","DOIUrl":null,"url":null,"abstract":"<div><p>Phase change material (PCM) thermal energy storage (TES) technology is a sustainable energy savings option that is especially lucrative in building energy management. PCM(s) can be applied directly for free cooling to reduce the building energy requirement for air conditioning. However, the practical application of PCMs remains hindered by challenges of poor heat transfer which causes long charging and discharging times, incongruent phase transitions, and poor thermal stability among others. To address these challenges, this study produces a nanocomposite-PCM containing 94.25 mass% PCM-sp26, 5 mass% disodium phosphate (DSP), and 0.75 mass% graphene nanoplatelets (GnP). The composite was observed to have faster melting and solidification cycles by 12.5 and 18.5%, respectively, compared to the base PCM-sp26. Thermal reliability is presented using temperature v time graphs, and material characterizations are presented using FTIR, XRD, and SEM analyses. The composite shows improved pH by ~ 21.3%, reduced sedimentation only noticeable after + 48 h compared to 30 min for the base PCM-sp26, a narrower phase change range of 27–27.5 °C, and ~ 8% larger density. The GnP improves the melting/solidification behavior of the base PCM without significantly altering the crystalline structure and functional groups of the material. Deterioration of the latent heat is limited to ~ 24.2% only, to provide a material with a storage capacity of ~ 136.4 kJ kg<sup>−1</sup>.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 3","pages":"1491 - 1507"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced inorganic (SP26) phase change material with Na2HPO4 and graphene nanoplatelets for latent heat storage applications\",\"authors\":\"Allan Takudzwa Muzhanje,&nbsp;Hamdy Hassan\",\"doi\":\"10.1007/s10973-024-13958-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phase change material (PCM) thermal energy storage (TES) technology is a sustainable energy savings option that is especially lucrative in building energy management. PCM(s) can be applied directly for free cooling to reduce the building energy requirement for air conditioning. However, the practical application of PCMs remains hindered by challenges of poor heat transfer which causes long charging and discharging times, incongruent phase transitions, and poor thermal stability among others. To address these challenges, this study produces a nanocomposite-PCM containing 94.25 mass% PCM-sp26, 5 mass% disodium phosphate (DSP), and 0.75 mass% graphene nanoplatelets (GnP). The composite was observed to have faster melting and solidification cycles by 12.5 and 18.5%, respectively, compared to the base PCM-sp26. Thermal reliability is presented using temperature v time graphs, and material characterizations are presented using FTIR, XRD, and SEM analyses. The composite shows improved pH by ~ 21.3%, reduced sedimentation only noticeable after + 48 h compared to 30 min for the base PCM-sp26, a narrower phase change range of 27–27.5 °C, and ~ 8% larger density. The GnP improves the melting/solidification behavior of the base PCM without significantly altering the crystalline structure and functional groups of the material. Deterioration of the latent heat is limited to ~ 24.2% only, to provide a material with a storage capacity of ~ 136.4 kJ kg<sup>−1</sup>.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"150 3\",\"pages\":\"1491 - 1507\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13958-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13958-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

相变材料(PCM)热储能(TES)技术是一种可持续的节能选择,在建筑能源管理中尤其有利可图。PCM(s)可直接应用于自然冷却,以减少建筑物对空调的能源需求。然而,pcm的实际应用仍然受到传热不良的挑战,导致充放电时间长,相变不一致,热稳定性差等。为了解决这些挑战,本研究生产了一种纳米复合材料- pcm,其中含有94.25质量%的PCM-sp26, 5质量%的磷酸二钠(DSP)和0.75质量%的石墨烯纳米片(GnP)。与基体PCM-sp26相比,该复合材料的熔化和凝固周期分别快了12.5和18.5%。热可靠性用温度-时间图表示,材料的表征用FTIR, XRD和SEM分析。该复合材料的pH值提高了~ 21.3%,与碱性PCM-sp26相比,在+ 48 h后沉淀仅明显减少,相变范围更窄,为27-27.5°C,密度提高了~ 8%。GnP在不显著改变材料晶体结构和官能团的情况下改善了基体PCM的熔化/凝固行为。潜热的恶化被限制在~ 24.2%,以提供~ 136.4 kJ kg−1的存储容量的材料。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced inorganic (SP26) phase change material with Na2HPO4 and graphene nanoplatelets for latent heat storage applications

Phase change material (PCM) thermal energy storage (TES) technology is a sustainable energy savings option that is especially lucrative in building energy management. PCM(s) can be applied directly for free cooling to reduce the building energy requirement for air conditioning. However, the practical application of PCMs remains hindered by challenges of poor heat transfer which causes long charging and discharging times, incongruent phase transitions, and poor thermal stability among others. To address these challenges, this study produces a nanocomposite-PCM containing 94.25 mass% PCM-sp26, 5 mass% disodium phosphate (DSP), and 0.75 mass% graphene nanoplatelets (GnP). The composite was observed to have faster melting and solidification cycles by 12.5 and 18.5%, respectively, compared to the base PCM-sp26. Thermal reliability is presented using temperature v time graphs, and material characterizations are presented using FTIR, XRD, and SEM analyses. The composite shows improved pH by ~ 21.3%, reduced sedimentation only noticeable after + 48 h compared to 30 min for the base PCM-sp26, a narrower phase change range of 27–27.5 °C, and ~ 8% larger density. The GnP improves the melting/solidification behavior of the base PCM without significantly altering the crystalline structure and functional groups of the material. Deterioration of the latent heat is limited to ~ 24.2% only, to provide a material with a storage capacity of ~ 136.4 kJ kg−1.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信