l-丝氨酸-壳聚糖修饰层状双氢氧化物的ph敏感生物载体同时释放亲疏水药物

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Soheyla Karimi, Hassan Namazi, Mohammad Aghazadeh
{"title":"l-丝氨酸-壳聚糖修饰层状双氢氧化物的ph敏感生物载体同时释放亲疏水药物","authors":"Soheyla Karimi,&nbsp;Hassan Namazi,&nbsp;Mohammad Aghazadeh","doi":"10.1007/s10924-025-03560-1","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the development of pH-responsive carriers has emerged as a promising area of research in cancer treatment. For these reasons, the purpose of the present work is to investigate layered double hydroxides decorated with l-serine-chitosan (LDH-DOX-CUR/Ser-CS) for the targeted release of doxorubicin (DOX, hydrophilic) and curcumin (CUR, hydrophobic) drugs to HepG2 liver cancer cells. Different methods such as FT-IR, FE-SEM, Zeta potential, EDX, and XRD analysis were employed to validate the structural properties of the developed bio-carriers. The encapsulation efficiencies for DOX and CUR were ∼96.8% and ∼83.6%, respectively. The drug release evaluation highlighted the pH-sensitive and controlled release capabilities of the LDH-DOX-CUR/Ser-CS bio-carriers to acidic tumor microenvironments. Both drugs’ release mechanisms also showed compliance with the Fickian diffusion from the Korsmeyer-Peppas model. Additionally, the bioavailability of the designed LDH against both HepG2 (liver cancer cell line) and L929 (normal liver cell line) cells was proved by cytotoxicity test. On the other hand, the LDH-DOX-CUR/Ser-CS bio-carriers exhibited higher cytotoxicity against HepG2 cells, which is caused by the controlled and targeted delivery of both drugs to these cells. The antibacterial, antioxidant, and blood compatibility properties of the engineered bio-carriers were confirmed by relevant in vitro techniques. In general, the results of this study showed that engineered bio-carriers have the necessary potential and efficiency for use as drug delivery bio-carriers in the biomedical field.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 6","pages":"2758 - 2775"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Release of Hydrophilic and Hydrophobic Drugs by a pH-sensitive Bio-carrier Based on Layered Double Hydroxides Decorated with l-serine-chitosan\",\"authors\":\"Soheyla Karimi,&nbsp;Hassan Namazi,&nbsp;Mohammad Aghazadeh\",\"doi\":\"10.1007/s10924-025-03560-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, the development of pH-responsive carriers has emerged as a promising area of research in cancer treatment. For these reasons, the purpose of the present work is to investigate layered double hydroxides decorated with l-serine-chitosan (LDH-DOX-CUR/Ser-CS) for the targeted release of doxorubicin (DOX, hydrophilic) and curcumin (CUR, hydrophobic) drugs to HepG2 liver cancer cells. Different methods such as FT-IR, FE-SEM, Zeta potential, EDX, and XRD analysis were employed to validate the structural properties of the developed bio-carriers. The encapsulation efficiencies for DOX and CUR were ∼96.8% and ∼83.6%, respectively. The drug release evaluation highlighted the pH-sensitive and controlled release capabilities of the LDH-DOX-CUR/Ser-CS bio-carriers to acidic tumor microenvironments. Both drugs’ release mechanisms also showed compliance with the Fickian diffusion from the Korsmeyer-Peppas model. Additionally, the bioavailability of the designed LDH against both HepG2 (liver cancer cell line) and L929 (normal liver cell line) cells was proved by cytotoxicity test. On the other hand, the LDH-DOX-CUR/Ser-CS bio-carriers exhibited higher cytotoxicity against HepG2 cells, which is caused by the controlled and targeted delivery of both drugs to these cells. The antibacterial, antioxidant, and blood compatibility properties of the engineered bio-carriers were confirmed by relevant in vitro techniques. In general, the results of this study showed that engineered bio-carriers have the necessary potential and efficiency for use as drug delivery bio-carriers in the biomedical field.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 6\",\"pages\":\"2758 - 2775\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03560-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03560-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,ph反应性载体的开发已成为癌症治疗研究的一个有前途的领域。基于这些原因,本研究的目的是研究l-丝氨酸-壳聚糖(LDH-DOX-CUR/Ser-CS)修饰的层状双氢氧化物对HepG2肝癌细胞靶向释放阿霉素(DOX,亲水性)和姜黄素(CUR,疏水性)药物的作用。采用FT-IR、FE-SEM、Zeta电位、EDX和XRD等方法对制备的生物载体进行了结构表征。DOX和CUR的包封效率分别为~ 96.8%和~ 83.6%。药物释放评价强调了LDH-DOX-CUR/Ser-CS生物载体对酸性肿瘤微环境的ph敏感和可控释放能力。两种药物的释放机制也符合Korsmeyer-Peppas模型中的Fickian扩散。此外,通过细胞毒试验证实了所设计的LDH对HepG2(肝癌细胞系)和L929(正常肝细胞系)的生物利用度。另一方面,LDH-DOX-CUR/Ser-CS生物载体对HepG2细胞表现出更高的细胞毒性,这是由两种药物对HepG2细胞的控制和靶向递送引起的。通过相关体外实验验证了工程生物载体的抗菌、抗氧化和血液相容性。综上所述,本研究结果表明,工程生物载体在生物医学领域作为给药生物载体具有必要的潜力和效率。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Release of Hydrophilic and Hydrophobic Drugs by a pH-sensitive Bio-carrier Based on Layered Double Hydroxides Decorated with l-serine-chitosan

Recently, the development of pH-responsive carriers has emerged as a promising area of research in cancer treatment. For these reasons, the purpose of the present work is to investigate layered double hydroxides decorated with l-serine-chitosan (LDH-DOX-CUR/Ser-CS) for the targeted release of doxorubicin (DOX, hydrophilic) and curcumin (CUR, hydrophobic) drugs to HepG2 liver cancer cells. Different methods such as FT-IR, FE-SEM, Zeta potential, EDX, and XRD analysis were employed to validate the structural properties of the developed bio-carriers. The encapsulation efficiencies for DOX and CUR were ∼96.8% and ∼83.6%, respectively. The drug release evaluation highlighted the pH-sensitive and controlled release capabilities of the LDH-DOX-CUR/Ser-CS bio-carriers to acidic tumor microenvironments. Both drugs’ release mechanisms also showed compliance with the Fickian diffusion from the Korsmeyer-Peppas model. Additionally, the bioavailability of the designed LDH against both HepG2 (liver cancer cell line) and L929 (normal liver cell line) cells was proved by cytotoxicity test. On the other hand, the LDH-DOX-CUR/Ser-CS bio-carriers exhibited higher cytotoxicity against HepG2 cells, which is caused by the controlled and targeted delivery of both drugs to these cells. The antibacterial, antioxidant, and blood compatibility properties of the engineered bio-carriers were confirmed by relevant in vitro techniques. In general, the results of this study showed that engineered bio-carriers have the necessary potential and efficiency for use as drug delivery bio-carriers in the biomedical field.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信