甲磺酸卡莫他雾化治疗SARS-CoV- 2感染的配方及体外试验

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Rama Kashikar, Arun Kumar Kotha, Rakshya Shrestha, Rudragouda Channappanavar, Mahavir Bhupal Chougule
{"title":"甲磺酸卡莫他雾化治疗SARS-CoV- 2感染的配方及体外试验","authors":"Rama Kashikar,&nbsp;Arun Kumar Kotha,&nbsp;Rakshya Shrestha,&nbsp;Rudragouda Channappanavar,&nbsp;Mahavir Bhupal Chougule","doi":"10.1208/s12249-025-03099-3","DOIUrl":null,"url":null,"abstract":"<div><p>COVID- 19, caused by the coronavirus SARS-CoV- 2, has arisen as a global health epidemic, claiming the lives of millions of people throughout the world. Combating the pandemic has involved developing and approving vaccines and antiviral products. Camostat Mesylate (Camo) is a TMPRSS2 inhibitor that inhibits virus-cell membrane fusion and, thereby, viral multiplication. Significant limitations of using oral Camo include the limited amount of Camo reaching the site of action, lungs, side effects due to distribution to all tissues, and enzymatic breakdown in the gut. This investigation aims to develop self-administrable and patient-compliant extended-release Camo-loaded pegylated nanoliposomes (Camo-pegNLs) for delivering Camo directly to the lungs, thereby enabling faster onset of action and overcoming limitations of oral Camo delivery. We developed the Camo-pegNLs were composed of 1,2-dipalmitoyl-sn-glycerol- 3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycerol- 3-phosphoethanolamine (DOPE-PEG, MW2000) and cholesterol using the ethanol injection technique and syringe pump. The NLs were characterized for their particle size, polydispersity index (PDI), and zeta potential using Malvern Zetasizer. The assay, unentrapped Camo using Vivaspin 500 ultrafilter (10 kDa) and in-vitro release were determined. The Camo content was analyzed using a validated HPLC method. The aerodynamic properties of Camo-pegNLs were determined using a Westech Andersen Cascade Impactor (ACI) at 28.3L/min and a pneumatic jet nebulizer. The antiviral effect of Camo-pegNLs was assessed in Vero cells expressing TMPRSS2 and infected with SARS-CoV- 2. Camo-pegNLs suspension showed size of 167.50 ± 0.90 nm, zeta potential of 0.48 ± 0.04 mV, and PDI of 0.07 ± 0.01. The quantity of entrapped Camo was found to be 44.86 ± 1.35%w/v, and the drug loading was 27.41 ± 0.04%w/w. The Camo-pegNL- 2 had an extended release of up to 24 h, MMAD of 4.295 ± 0.1 µm, GSD of 1.915 ± 0.064, and FPF of 42.01% ± 6.90. Camo-pegNLs showed a significant antiviral effect on Vero cells compared to no treatment group (<i>p</i> &lt; 0.01). An efficacious nebulized Camo-pegNLs suspension product was successfully developed for direct lung delivery to Camo-pegNLs to treat the SARS-CoV- 2 infection.</p><h3>Graphical Abstract</h3><p>SARS-CoV- 2</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-025-03099-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Formulation and In-Vitro Testing of Nebulized Camostat Mesylate Loaded Nanoliposomes for the Treatment of SARS-CoV- 2 Infection\",\"authors\":\"Rama Kashikar,&nbsp;Arun Kumar Kotha,&nbsp;Rakshya Shrestha,&nbsp;Rudragouda Channappanavar,&nbsp;Mahavir Bhupal Chougule\",\"doi\":\"10.1208/s12249-025-03099-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>COVID- 19, caused by the coronavirus SARS-CoV- 2, has arisen as a global health epidemic, claiming the lives of millions of people throughout the world. Combating the pandemic has involved developing and approving vaccines and antiviral products. Camostat Mesylate (Camo) is a TMPRSS2 inhibitor that inhibits virus-cell membrane fusion and, thereby, viral multiplication. Significant limitations of using oral Camo include the limited amount of Camo reaching the site of action, lungs, side effects due to distribution to all tissues, and enzymatic breakdown in the gut. This investigation aims to develop self-administrable and patient-compliant extended-release Camo-loaded pegylated nanoliposomes (Camo-pegNLs) for delivering Camo directly to the lungs, thereby enabling faster onset of action and overcoming limitations of oral Camo delivery. We developed the Camo-pegNLs were composed of 1,2-dipalmitoyl-sn-glycerol- 3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycerol- 3-phosphoethanolamine (DOPE-PEG, MW2000) and cholesterol using the ethanol injection technique and syringe pump. The NLs were characterized for their particle size, polydispersity index (PDI), and zeta potential using Malvern Zetasizer. The assay, unentrapped Camo using Vivaspin 500 ultrafilter (10 kDa) and in-vitro release were determined. The Camo content was analyzed using a validated HPLC method. The aerodynamic properties of Camo-pegNLs were determined using a Westech Andersen Cascade Impactor (ACI) at 28.3L/min and a pneumatic jet nebulizer. The antiviral effect of Camo-pegNLs was assessed in Vero cells expressing TMPRSS2 and infected with SARS-CoV- 2. Camo-pegNLs suspension showed size of 167.50 ± 0.90 nm, zeta potential of 0.48 ± 0.04 mV, and PDI of 0.07 ± 0.01. The quantity of entrapped Camo was found to be 44.86 ± 1.35%w/v, and the drug loading was 27.41 ± 0.04%w/w. The Camo-pegNL- 2 had an extended release of up to 24 h, MMAD of 4.295 ± 0.1 µm, GSD of 1.915 ± 0.064, and FPF of 42.01% ± 6.90. Camo-pegNLs showed a significant antiviral effect on Vero cells compared to no treatment group (<i>p</i> &lt; 0.01). An efficacious nebulized Camo-pegNLs suspension product was successfully developed for direct lung delivery to Camo-pegNLs to treat the SARS-CoV- 2 infection.</p><h3>Graphical Abstract</h3><p>SARS-CoV- 2</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1208/s12249-025-03099-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-025-03099-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03099-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

由冠状病毒SARS-CoV- 2引起的COVID- 19已成为全球卫生流行病,夺去了全世界数百万人的生命。与大流行的斗争涉及开发和批准疫苗和抗病毒产品。甲磺酸卡莫司他(Camostat Mesylate, Camo)是一种TMPRSS2抑制剂,可抑制病毒与细胞膜融合,从而抑制病毒增殖。使用口服迷彩的重大限制包括迷彩到达作用部位的量有限,肺部,由于分布到所有组织而产生的副作用,以及肠道中的酶分解。本研究旨在开发可自我给药和患者依从性的缓释载迷彩聚乙二醇纳米脂质体(Camo- pegnl),用于将迷彩直接递送到肺部,从而加快起效速度并克服口服迷彩递送的局限性。camo - pegnl由1,2-二棕榈酰基- n-甘油- 3-磷酸胆碱(DPPC)、1,2-二油基- n-甘油- 3-磷酸乙醇胺(DOPE-PEG, MW2000)和胆固醇组成,采用乙醇注射技术和注射泵制备。利用Malvern Zetasizer对NLs的粒径、多分散性指数(PDI)和zeta电位进行表征。用Vivaspin 500超滤器(10 kDa)测定未包封的迷彩和体外释放度。采用高效液相色谱法对其含量进行分析。采用28.3L/min的Westech Andersen叶栅冲击器(ACI)和气动喷射雾化器对camo - pegnl的气动性能进行了测试。在表达TMPRSS2并感染SARS-CoV- 2的Vero细胞中评估camo - pegnl的抗病毒作用。camo - pegnl悬浮液的粒径为167.50±0.90 nm, zeta电位为0.48±0.04 mV, PDI为0.07±0.01。Camo包载量为44.86±1.35%w/v,载药量为27.41±0.04%w/w。Camo-pegNL- 2的缓释时间长达24 h, MMAD为4.295±0.1µm, GSD为1.915±0.064,FPF为42.01%±6.90。与未给药组相比,camo - pegnl对Vero细胞有显著的抗病毒作用(p <;0.01)。成功研制了一种雾化camo - pegnl悬浮液,可直接肺给药治疗SARS-CoV- 2感染。图形摘要sars - cov - 2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation and In-Vitro Testing of Nebulized Camostat Mesylate Loaded Nanoliposomes for the Treatment of SARS-CoV- 2 Infection

COVID- 19, caused by the coronavirus SARS-CoV- 2, has arisen as a global health epidemic, claiming the lives of millions of people throughout the world. Combating the pandemic has involved developing and approving vaccines and antiviral products. Camostat Mesylate (Camo) is a TMPRSS2 inhibitor that inhibits virus-cell membrane fusion and, thereby, viral multiplication. Significant limitations of using oral Camo include the limited amount of Camo reaching the site of action, lungs, side effects due to distribution to all tissues, and enzymatic breakdown in the gut. This investigation aims to develop self-administrable and patient-compliant extended-release Camo-loaded pegylated nanoliposomes (Camo-pegNLs) for delivering Camo directly to the lungs, thereby enabling faster onset of action and overcoming limitations of oral Camo delivery. We developed the Camo-pegNLs were composed of 1,2-dipalmitoyl-sn-glycerol- 3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycerol- 3-phosphoethanolamine (DOPE-PEG, MW2000) and cholesterol using the ethanol injection technique and syringe pump. The NLs were characterized for their particle size, polydispersity index (PDI), and zeta potential using Malvern Zetasizer. The assay, unentrapped Camo using Vivaspin 500 ultrafilter (10 kDa) and in-vitro release were determined. The Camo content was analyzed using a validated HPLC method. The aerodynamic properties of Camo-pegNLs were determined using a Westech Andersen Cascade Impactor (ACI) at 28.3L/min and a pneumatic jet nebulizer. The antiviral effect of Camo-pegNLs was assessed in Vero cells expressing TMPRSS2 and infected with SARS-CoV- 2. Camo-pegNLs suspension showed size of 167.50 ± 0.90 nm, zeta potential of 0.48 ± 0.04 mV, and PDI of 0.07 ± 0.01. The quantity of entrapped Camo was found to be 44.86 ± 1.35%w/v, and the drug loading was 27.41 ± 0.04%w/w. The Camo-pegNL- 2 had an extended release of up to 24 h, MMAD of 4.295 ± 0.1 µm, GSD of 1.915 ± 0.064, and FPF of 42.01% ± 6.90. Camo-pegNLs showed a significant antiviral effect on Vero cells compared to no treatment group (p < 0.01). An efficacious nebulized Camo-pegNLs suspension product was successfully developed for direct lung delivery to Camo-pegNLs to treat the SARS-CoV- 2 infection.

Graphical Abstract

SARS-CoV- 2

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信