具有一般开边界条件的\( {D}_2^{(2)} \)自旋链模型的精确物理量

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Pengcheng Lu, Junpeng Cao, Wen-Li Yang, Ian Marquette, Yao-Zhong Zhang
{"title":"具有一般开边界条件的\\( {D}_2^{(2)} \\)自旋链模型的精确物理量","authors":"Pengcheng Lu,&nbsp;Junpeng Cao,&nbsp;Wen-Li Yang,&nbsp;Ian Marquette,&nbsp;Yao-Zhong Zhang","doi":"10.1007/JHEP05(2025)137","DOIUrl":null,"url":null,"abstract":"<p>We study the quantum integrable spin chain model associated with the twisted <span>\\( {D}_2^{(2)} \\)</span> algebra (or simply the <span>\\( {D}_2^{(2)} \\)</span> model) under generic open boundary conditions. The Hamiltonian of this model can be factorized into the sum of two staggered XXZ spin chains. Applying the <i>t</i>-<i>W</i> method, we derive the homogeneous Bethe ansatz equations for the zeros of the transfer matrix eigenvalues and the patterns of the corresponding zeros of the staggered XXZ spin chain with generic integrable boundaries. Based on these results, we analytically compute the surface energies and excitation energies of the <span>\\( {D}_2^{(2)} \\)</span> model in different regimes of boundary parameters.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)137.pdf","citationCount":"0","resultStr":"{\"title\":\"Exact physical quantities of the \\\\( {D}_2^{(2)} \\\\) spin chain model with generic open boundary conditions\",\"authors\":\"Pengcheng Lu,&nbsp;Junpeng Cao,&nbsp;Wen-Li Yang,&nbsp;Ian Marquette,&nbsp;Yao-Zhong Zhang\",\"doi\":\"10.1007/JHEP05(2025)137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the quantum integrable spin chain model associated with the twisted <span>\\\\( {D}_2^{(2)} \\\\)</span> algebra (or simply the <span>\\\\( {D}_2^{(2)} \\\\)</span> model) under generic open boundary conditions. The Hamiltonian of this model can be factorized into the sum of two staggered XXZ spin chains. Applying the <i>t</i>-<i>W</i> method, we derive the homogeneous Bethe ansatz equations for the zeros of the transfer matrix eigenvalues and the patterns of the corresponding zeros of the staggered XXZ spin chain with generic integrable boundaries. Based on these results, we analytically compute the surface energies and excitation energies of the <span>\\\\( {D}_2^{(2)} \\\\)</span> model in different regimes of boundary parameters.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)137.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)137\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)137","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

研究了在一般开放边界条件下,与扭曲\( {D}_2^{(2)} \)代数相关的量子可积自旋链模型(或简称\( {D}_2^{(2)} \)模型)。该模型的哈密顿量可分解为两个交错的XXZ自旋链的和。应用t-W方法,导出了具有一般可积边界的交错XXZ自旋链传递矩阵特征值零点的齐次Bethe ansatz方程和相应零点的模式。在此基础上,分析计算了\( {D}_2^{(2)} \)模型在不同边界参数下的表面能和激发能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact physical quantities of the \( {D}_2^{(2)} \) spin chain model with generic open boundary conditions

We study the quantum integrable spin chain model associated with the twisted \( {D}_2^{(2)} \) algebra (or simply the \( {D}_2^{(2)} \) model) under generic open boundary conditions. The Hamiltonian of this model can be factorized into the sum of two staggered XXZ spin chains. Applying the t-W method, we derive the homogeneous Bethe ansatz equations for the zeros of the transfer matrix eigenvalues and the patterns of the corresponding zeros of the staggered XXZ spin chain with generic integrable boundaries. Based on these results, we analytically compute the surface energies and excitation energies of the \( {D}_2^{(2)} \) model in different regimes of boundary parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信