{"title":"具有流体时钟的量子宇宙学半线上的精确路径积分及算子序模糊性","authors":"Vikramaditya Mondal, Harkirat Singh Sahota, Kinjalk Lochan","doi":"10.1007/JHEP05(2025)128","DOIUrl":null,"url":null,"abstract":"<p>We perform <i>exact</i> half-line path integral quantization of flat, homogeneous cosmological models containing a perfect fluid acting as an internal clock, in a <i>D</i> + 1 dimensional minisuperspace setup. We also discuss certain classes of operator ordering ambiguity inherent in such quantization procedures and argue that a particular ordering prescription in the quantum theory can preserve two symmetries, namely arbitrary lapse rescalings and general covariance, which are already present at the classical level. As a result of this imposition, a large class of quantum Hamiltonians differing by operator ordering produces the same inner products between quantum states. This imposition of the two symmetries of the classical minisuperspace models leads to a unique prescription for writing the quantum Hamiltonian for minisuperspace dimension <i>D</i> > 2. Interestingly, in the case of <i>D</i> = 1, the lapse rescaling symmetry is lost in the quantum theory, leading to an essentially ambiguous description of the canonical theory. We provide general proof of this in the context of both canonical quantization and path integrals. We supply concrete examples to validate our findings further.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)128.pdf","citationCount":"0","resultStr":"{\"title\":\"Exact path integrals on half-line in quantum cosmology with a fluid clock and aspects of operator ordering ambiguity\",\"authors\":\"Vikramaditya Mondal, Harkirat Singh Sahota, Kinjalk Lochan\",\"doi\":\"10.1007/JHEP05(2025)128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We perform <i>exact</i> half-line path integral quantization of flat, homogeneous cosmological models containing a perfect fluid acting as an internal clock, in a <i>D</i> + 1 dimensional minisuperspace setup. We also discuss certain classes of operator ordering ambiguity inherent in such quantization procedures and argue that a particular ordering prescription in the quantum theory can preserve two symmetries, namely arbitrary lapse rescalings and general covariance, which are already present at the classical level. As a result of this imposition, a large class of quantum Hamiltonians differing by operator ordering produces the same inner products between quantum states. This imposition of the two symmetries of the classical minisuperspace models leads to a unique prescription for writing the quantum Hamiltonian for minisuperspace dimension <i>D</i> > 2. Interestingly, in the case of <i>D</i> = 1, the lapse rescaling symmetry is lost in the quantum theory, leading to an essentially ambiguous description of the canonical theory. We provide general proof of this in the context of both canonical quantization and path integrals. We supply concrete examples to validate our findings further.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)128.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)128\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)128","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Exact path integrals on half-line in quantum cosmology with a fluid clock and aspects of operator ordering ambiguity
We perform exact half-line path integral quantization of flat, homogeneous cosmological models containing a perfect fluid acting as an internal clock, in a D + 1 dimensional minisuperspace setup. We also discuss certain classes of operator ordering ambiguity inherent in such quantization procedures and argue that a particular ordering prescription in the quantum theory can preserve two symmetries, namely arbitrary lapse rescalings and general covariance, which are already present at the classical level. As a result of this imposition, a large class of quantum Hamiltonians differing by operator ordering produces the same inner products between quantum states. This imposition of the two symmetries of the classical minisuperspace models leads to a unique prescription for writing the quantum Hamiltonian for minisuperspace dimension D > 2. Interestingly, in the case of D = 1, the lapse rescaling symmetry is lost in the quantum theory, leading to an essentially ambiguous description of the canonical theory. We provide general proof of this in the context of both canonical quantization and path integrals. We supply concrete examples to validate our findings further.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).