{"title":"关于超粒子及其配分函数","authors":"E. Boffo, P. A. Grassi, O. Hulik, I. Sachs","doi":"10.1007/JHEP05(2025)140","DOIUrl":null,"url":null,"abstract":"<p>We describe a family of twisted partition functions for the relativistic spinning particle models. For suitable choices of fugacities this computes a refined Euler characteristics that counts the dimension of the physical states for arbitrary picture and, furthermore, encodes the complete BV-spectrum of the effective space-time gauge theory originating from this model upon second quantization. The relation between twisted world-line partition functions and the spectrum of the space-time theory is most easily seen on-shell but we will give an off-shell description as well. Finally we discuss the construction of a space-time action in terms of the world-line fields in analogy to string field theory.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)140.pdf","citationCount":"0","resultStr":"{\"title\":\"On superparticles and their partition functions\",\"authors\":\"E. Boffo, P. A. Grassi, O. Hulik, I. Sachs\",\"doi\":\"10.1007/JHEP05(2025)140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe a family of twisted partition functions for the relativistic spinning particle models. For suitable choices of fugacities this computes a refined Euler characteristics that counts the dimension of the physical states for arbitrary picture and, furthermore, encodes the complete BV-spectrum of the effective space-time gauge theory originating from this model upon second quantization. The relation between twisted world-line partition functions and the spectrum of the space-time theory is most easily seen on-shell but we will give an off-shell description as well. Finally we discuss the construction of a space-time action in terms of the world-line fields in analogy to string field theory.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)140.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)140\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)140","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We describe a family of twisted partition functions for the relativistic spinning particle models. For suitable choices of fugacities this computes a refined Euler characteristics that counts the dimension of the physical states for arbitrary picture and, furthermore, encodes the complete BV-spectrum of the effective space-time gauge theory originating from this model upon second quantization. The relation between twisted world-line partition functions and the spectrum of the space-time theory is most easily seen on-shell but we will give an off-shell description as well. Finally we discuss the construction of a space-time action in terms of the world-line fields in analogy to string field theory.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).