混合雪烧蚀优化的质子交换膜燃料电池参数估计多策略粒子群优化算法

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-03-17 DOI:10.1007/s11581-025-06200-9
Mohammad Aljaidi, Sunilkumar P. Agrawal, Anil Parmar, Pradeep Jangir,  Arpita, Bhargavi Indrajit Trivedi, Gulothungan G., Reena Jangid, Ali Fayez Alkoradees
{"title":"混合雪烧蚀优化的质子交换膜燃料电池参数估计多策略粒子群优化算法","authors":"Mohammad Aljaidi,&nbsp;Sunilkumar P. Agrawal,&nbsp;Anil Parmar,&nbsp;Pradeep Jangir,&nbsp; Arpita,&nbsp;Bhargavi Indrajit Trivedi,&nbsp;Gulothungan G.,&nbsp;Reena Jangid,&nbsp;Ali Fayez Alkoradees","doi":"10.1007/s11581-025-06200-9","DOIUrl":null,"url":null,"abstract":"<div><p>The research presents Snow Ablation Optimized Multi-strategy Particle Swarm Optimization (SAO-MPSO) as an algorithm to perform accurate parameter estimation of proton exchange membrane fuel cells (PEMFCs). The four optimization methods PSO, PPSO, AGPSO, and VPPSO fail to achieve proper exploration–exploitation balance which results in poor parameter tuning outcomes. SAO-MPSO assumes a framework where snow ablation search elements combine with multi-strategy reproduction methods to accelerate both speed-to-convergence and analysis precision. SAO-MPSO demonstrates excellent accuracy and stability when tested on six commercial PEMFC models under different operating conditions. SAO-MPSO demonstrates superior performance by reaching the lowest error metrics alongside the fastest convergence speed thus becoming an optimal optimization tool for PEMFC modeling. The obtained results demonstrate the reliability of this method for fuel cell parameter optimization which can lead to its application in real-time energy systems. The upcoming research will concentrate on developing SAO-MPSO for extensive fuel cell implementations and additional energy technology domains.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 5","pages":"4535 - 4562"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid snow ablation optimized multi-strategy particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell\",\"authors\":\"Mohammad Aljaidi,&nbsp;Sunilkumar P. Agrawal,&nbsp;Anil Parmar,&nbsp;Pradeep Jangir,&nbsp; Arpita,&nbsp;Bhargavi Indrajit Trivedi,&nbsp;Gulothungan G.,&nbsp;Reena Jangid,&nbsp;Ali Fayez Alkoradees\",\"doi\":\"10.1007/s11581-025-06200-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research presents Snow Ablation Optimized Multi-strategy Particle Swarm Optimization (SAO-MPSO) as an algorithm to perform accurate parameter estimation of proton exchange membrane fuel cells (PEMFCs). The four optimization methods PSO, PPSO, AGPSO, and VPPSO fail to achieve proper exploration–exploitation balance which results in poor parameter tuning outcomes. SAO-MPSO assumes a framework where snow ablation search elements combine with multi-strategy reproduction methods to accelerate both speed-to-convergence and analysis precision. SAO-MPSO demonstrates excellent accuracy and stability when tested on six commercial PEMFC models under different operating conditions. SAO-MPSO demonstrates superior performance by reaching the lowest error metrics alongside the fastest convergence speed thus becoming an optimal optimization tool for PEMFC modeling. The obtained results demonstrate the reliability of this method for fuel cell parameter optimization which can lead to its application in real-time energy systems. The upcoming research will concentrate on developing SAO-MPSO for extensive fuel cell implementations and additional energy technology domains.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 5\",\"pages\":\"4535 - 4562\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06200-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06200-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于雪消融优化的多策略粒子群优化算法(SAO-MPSO)来实现质子交换膜燃料电池(pemfc)参数的精确估计。PSO、PPSO、AGPSO和VPPSO四种优化方法未能达到合理的勘探开发平衡,导致参数调优效果不佳。SAO-MPSO假设了一个框架,其中雪消融搜索元素与多策略再现方法相结合,以加速收敛速度和分析精度。在六种商用PEMFC模型上进行了不同操作条件下的测试,结果表明SAO-MPSO具有优异的准确性和稳定性。SAO-MPSO通过达到最低的误差指标和最快的收敛速度显示出卓越的性能,从而成为PEMFC建模的最佳优化工具。结果表明,该方法在燃料电池参数优化中的可靠性,可用于实时能源系统。接下来的研究将集中于开发SAO-MPSO,用于广泛的燃料电池应用和其他能源技术领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A hybrid snow ablation optimized multi-strategy particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell

A hybrid snow ablation optimized multi-strategy particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell

The research presents Snow Ablation Optimized Multi-strategy Particle Swarm Optimization (SAO-MPSO) as an algorithm to perform accurate parameter estimation of proton exchange membrane fuel cells (PEMFCs). The four optimization methods PSO, PPSO, AGPSO, and VPPSO fail to achieve proper exploration–exploitation balance which results in poor parameter tuning outcomes. SAO-MPSO assumes a framework where snow ablation search elements combine with multi-strategy reproduction methods to accelerate both speed-to-convergence and analysis precision. SAO-MPSO demonstrates excellent accuracy and stability when tested on six commercial PEMFC models under different operating conditions. SAO-MPSO demonstrates superior performance by reaching the lowest error metrics alongside the fastest convergence speed thus becoming an optimal optimization tool for PEMFC modeling. The obtained results demonstrate the reliability of this method for fuel cell parameter optimization which can lead to its application in real-time energy systems. The upcoming research will concentrate on developing SAO-MPSO for extensive fuel cell implementations and additional energy technology domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信