{"title":"小型试件纯弯曲试验机的研制","authors":"L. Zhang, J. Hu, H. Liu, D. Liu","doi":"10.1007/s11340-025-01154-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The characterization of the moment–curvature relationship for thin components within the elastic–plastic regime yields crucial insights not readily ascertainable through conventional tensile testing. However, most conventional bending testers only measure the force–displacement data of specimens without providing the bending moment and curvature information directly.</p><h3>Objective</h3><p>We aim to develop a pure-bending tester based on the cochleoid theory that can directly measure the bending moment–curvature response of thin components.</p><h3>Methods</h3><p>The bending moment is determined by employing a flexural pivot with a known spring constant paired with dual laser displacement sensors. By approximating the cochleoid as an eccentric arc trajectory, we move and rotate one end of the specimen to increase the curvature gradually. Finally, the moment–curvature relationship of the specimens can be obtained.</p><h3>Results</h3><p>The practical capability of the bending tester is demonstrated by measuring moment–curvature data from various specimens, including PET sheets, aluminum sheets, and Nylon 6 monofilaments. Cyclic bending and relaxation tests are performed on these typical specimens. The measurement results agree well with the theoretical predictions.</p><h3>Conclusions</h3><p>The instrument serves as a valuable tool for characterizing the bending properties of diverse small-scale components. Its versatility facilitates comprehensive assessments of the bending behavior of various materials and structures.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"65 5","pages":"625 - 636"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a New Pure Bending Tester for Small-Scale Specimens\",\"authors\":\"L. Zhang, J. Hu, H. Liu, D. Liu\",\"doi\":\"10.1007/s11340-025-01154-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The characterization of the moment–curvature relationship for thin components within the elastic–plastic regime yields crucial insights not readily ascertainable through conventional tensile testing. However, most conventional bending testers only measure the force–displacement data of specimens without providing the bending moment and curvature information directly.</p><h3>Objective</h3><p>We aim to develop a pure-bending tester based on the cochleoid theory that can directly measure the bending moment–curvature response of thin components.</p><h3>Methods</h3><p>The bending moment is determined by employing a flexural pivot with a known spring constant paired with dual laser displacement sensors. By approximating the cochleoid as an eccentric arc trajectory, we move and rotate one end of the specimen to increase the curvature gradually. Finally, the moment–curvature relationship of the specimens can be obtained.</p><h3>Results</h3><p>The practical capability of the bending tester is demonstrated by measuring moment–curvature data from various specimens, including PET sheets, aluminum sheets, and Nylon 6 monofilaments. Cyclic bending and relaxation tests are performed on these typical specimens. The measurement results agree well with the theoretical predictions.</p><h3>Conclusions</h3><p>The instrument serves as a valuable tool for characterizing the bending properties of diverse small-scale components. Its versatility facilitates comprehensive assessments of the bending behavior of various materials and structures.</p></div>\",\"PeriodicalId\":552,\"journal\":{\"name\":\"Experimental Mechanics\",\"volume\":\"65 5\",\"pages\":\"625 - 636\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11340-025-01154-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-025-01154-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Development of a New Pure Bending Tester for Small-Scale Specimens
Background
The characterization of the moment–curvature relationship for thin components within the elastic–plastic regime yields crucial insights not readily ascertainable through conventional tensile testing. However, most conventional bending testers only measure the force–displacement data of specimens without providing the bending moment and curvature information directly.
Objective
We aim to develop a pure-bending tester based on the cochleoid theory that can directly measure the bending moment–curvature response of thin components.
Methods
The bending moment is determined by employing a flexural pivot with a known spring constant paired with dual laser displacement sensors. By approximating the cochleoid as an eccentric arc trajectory, we move and rotate one end of the specimen to increase the curvature gradually. Finally, the moment–curvature relationship of the specimens can be obtained.
Results
The practical capability of the bending tester is demonstrated by measuring moment–curvature data from various specimens, including PET sheets, aluminum sheets, and Nylon 6 monofilaments. Cyclic bending and relaxation tests are performed on these typical specimens. The measurement results agree well with the theoretical predictions.
Conclusions
The instrument serves as a valuable tool for characterizing the bending properties of diverse small-scale components. Its versatility facilitates comprehensive assessments of the bending behavior of various materials and structures.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.