Zeno Pavanello, Laura Pirovano, Roberto Armellin, Andrea De Vittori, Pierluigi Di Lizia
{"title":"低推力推进轨迹下避碰机动优化","authors":"Zeno Pavanello, Laura Pirovano, Roberto Armellin, Andrea De Vittori, Pierluigi Di Lizia","doi":"10.1007/s42064-024-0227-3","DOIUrl":null,"url":null,"abstract":"<div><p>Conjunctions between spacecraft are increasingly common across orbital regimes, demanding reliable and efficient collision avoidance (COLA) strategies. The typical solution to the COLA problem is to compute a maneuver that reduces the collision risk while minimizing fuel expenditure. If the spacecraft is in a continuously propelled phase, this approach must be modified since the thrust profile is determined <i>a priori</i>, aiming to reach a final orbit. This work proposes using convex optimization to solve the short-term encounter COLA problem in such conditions. The optimization problem is two-fold: (i) the collision risk must be reduced below a certain threshold; (ii) after the conjunction, the spacecraft must be rerouted into the nominal trajectory. By casting the problem as a sequential convex program, the original nonlinear optimal control problem is solved iteratively, recovering an optimal solution. Within the second-order cone program framework, three strategies are proposed to address the problem: (i) determining the optimal switch-off time to avoid the collision while minimizing deviation from the nominal trajectory; computing a new thrust profile, deviating as little as possible from the original one in terms of (ii) vector or (iii) angular difference. The three strategies are tested on practical operational scenarios, using the nominal thrust profile from a low-thrust geostationary transfer orbit and conjunction details from a conjunction data message.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"9 2","pages":"247 - 271"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-024-0227-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Collision avoidance maneuver optimization during low-thrust propelled trajectories\",\"authors\":\"Zeno Pavanello, Laura Pirovano, Roberto Armellin, Andrea De Vittori, Pierluigi Di Lizia\",\"doi\":\"10.1007/s42064-024-0227-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conjunctions between spacecraft are increasingly common across orbital regimes, demanding reliable and efficient collision avoidance (COLA) strategies. The typical solution to the COLA problem is to compute a maneuver that reduces the collision risk while minimizing fuel expenditure. If the spacecraft is in a continuously propelled phase, this approach must be modified since the thrust profile is determined <i>a priori</i>, aiming to reach a final orbit. This work proposes using convex optimization to solve the short-term encounter COLA problem in such conditions. The optimization problem is two-fold: (i) the collision risk must be reduced below a certain threshold; (ii) after the conjunction, the spacecraft must be rerouted into the nominal trajectory. By casting the problem as a sequential convex program, the original nonlinear optimal control problem is solved iteratively, recovering an optimal solution. Within the second-order cone program framework, three strategies are proposed to address the problem: (i) determining the optimal switch-off time to avoid the collision while minimizing deviation from the nominal trajectory; computing a new thrust profile, deviating as little as possible from the original one in terms of (ii) vector or (iii) angular difference. The three strategies are tested on practical operational scenarios, using the nominal thrust profile from a low-thrust geostationary transfer orbit and conjunction details from a conjunction data message.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":\"9 2\",\"pages\":\"247 - 271\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42064-024-0227-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-024-0227-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0227-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Collision avoidance maneuver optimization during low-thrust propelled trajectories
Conjunctions between spacecraft are increasingly common across orbital regimes, demanding reliable and efficient collision avoidance (COLA) strategies. The typical solution to the COLA problem is to compute a maneuver that reduces the collision risk while minimizing fuel expenditure. If the spacecraft is in a continuously propelled phase, this approach must be modified since the thrust profile is determined a priori, aiming to reach a final orbit. This work proposes using convex optimization to solve the short-term encounter COLA problem in such conditions. The optimization problem is two-fold: (i) the collision risk must be reduced below a certain threshold; (ii) after the conjunction, the spacecraft must be rerouted into the nominal trajectory. By casting the problem as a sequential convex program, the original nonlinear optimal control problem is solved iteratively, recovering an optimal solution. Within the second-order cone program framework, three strategies are proposed to address the problem: (i) determining the optimal switch-off time to avoid the collision while minimizing deviation from the nominal trajectory; computing a new thrust profile, deviating as little as possible from the original one in terms of (ii) vector or (iii) angular difference. The three strategies are tested on practical operational scenarios, using the nominal thrust profile from a low-thrust geostationary transfer orbit and conjunction details from a conjunction data message.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.