金属硫化物原位生成Cu-和Ag-Sn合金用于CO2还原†

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-03-12 DOI:10.1039/D4YA00603H
Sebastian A. Sanden, Anne Schmidt, Miłosz Kożusznik, Yannik Haver, Yannick Weidemannn, Kevinjeorjios Pellumbi, Sven Rösler, Kai junge Puring, Andrzej Mikuła and Ulf-Peter Apfel
{"title":"金属硫化物原位生成Cu-和Ag-Sn合金用于CO2还原†","authors":"Sebastian A. Sanden, Anne Schmidt, Miłosz Kożusznik, Yannik Haver, Yannick Weidemannn, Kevinjeorjios Pellumbi, Sven Rösler, Kai junge Puring, Andrzej Mikuła and Ulf-Peter Apfel","doi":"10.1039/D4YA00603H","DOIUrl":null,"url":null,"abstract":"<p >Ag, Cu and Sn based electrocatalysts promise high CO<small><sub>2</sub></small> reduction kinetics and efficiencies on gas diffusion electrodes. Ag, Cu, Sn sulfide catalysts in particular may offer altered electronic properties and product selectivity, while still being easy to manufacture in scaleable synthesis routes. Comparing the CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>RR) performance of Cu<small><sub>3</sub></small>SnS<small><sub>4</sub></small>, Ag<small><sub>3</sub></small>SnS<small><sub>4</sub></small>, Cu<small><sub>2</sub></small>S, SnS and Ag<small><sub>8</sub></small>SnS<small><sub>6</sub></small> at 100 mA cm<small><sup>−2</sup></small>, formate is found to be the primary CO<small><sub>2</sub></small>RR product with a faradaic efficiency of 57% for Cu<small><sub>3</sub></small>SnS<small><sub>4</sub></small> and 81% for Ag<small><sub>3</sub></small>SnS<small><sub>4</sub></small>. Characterization by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction revealed the formation of Ag<small><sub>3</sub></small>Sn and Cu<small><sub>3</sub></small>Sn alloys from the corresponding sulfide species during CO<small><sub>2</sub></small>RR. But while the Cu<small><sub>3</sub></small>Sn based electrode surface decomposed into CuO and SnO after 2 h at −100 mA cm<small><sup>−2</sup></small>, metallic Ag<small><sub>3</sub></small>Sn sites on the corresponding electrode surface could be detected by XPS after removing the surface layer. Using density functional theory, the binding energies of *H, *CO and *OCHO on Cu<small><sub>3</sub></small>Sn and Ag<small><sub>3</sub></small>Sn were computed to identify possible catalytic sites. Thereby, Sn was found to render both Cu and Ag highly oxophilic resulting in strong adsorption of carboxylic functionalities, enabling formate production with a partial current density of up to 162 mA cm<small><sup>−2</sup></small>.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 5","pages":" 657-665"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00603h?page=search","citationCount":"0","resultStr":"{\"title\":\"In situ generation of Cu- and Ag–Sn alloys from metal sulfides for CO2 reduction†\",\"authors\":\"Sebastian A. Sanden, Anne Schmidt, Miłosz Kożusznik, Yannik Haver, Yannick Weidemannn, Kevinjeorjios Pellumbi, Sven Rösler, Kai junge Puring, Andrzej Mikuła and Ulf-Peter Apfel\",\"doi\":\"10.1039/D4YA00603H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ag, Cu and Sn based electrocatalysts promise high CO<small><sub>2</sub></small> reduction kinetics and efficiencies on gas diffusion electrodes. Ag, Cu, Sn sulfide catalysts in particular may offer altered electronic properties and product selectivity, while still being easy to manufacture in scaleable synthesis routes. Comparing the CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>RR) performance of Cu<small><sub>3</sub></small>SnS<small><sub>4</sub></small>, Ag<small><sub>3</sub></small>SnS<small><sub>4</sub></small>, Cu<small><sub>2</sub></small>S, SnS and Ag<small><sub>8</sub></small>SnS<small><sub>6</sub></small> at 100 mA cm<small><sup>−2</sup></small>, formate is found to be the primary CO<small><sub>2</sub></small>RR product with a faradaic efficiency of 57% for Cu<small><sub>3</sub></small>SnS<small><sub>4</sub></small> and 81% for Ag<small><sub>3</sub></small>SnS<small><sub>4</sub></small>. Characterization by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction revealed the formation of Ag<small><sub>3</sub></small>Sn and Cu<small><sub>3</sub></small>Sn alloys from the corresponding sulfide species during CO<small><sub>2</sub></small>RR. But while the Cu<small><sub>3</sub></small>Sn based electrode surface decomposed into CuO and SnO after 2 h at −100 mA cm<small><sup>−2</sup></small>, metallic Ag<small><sub>3</sub></small>Sn sites on the corresponding electrode surface could be detected by XPS after removing the surface layer. Using density functional theory, the binding energies of *H, *CO and *OCHO on Cu<small><sub>3</sub></small>Sn and Ag<small><sub>3</sub></small>Sn were computed to identify possible catalytic sites. Thereby, Sn was found to render both Cu and Ag highly oxophilic resulting in strong adsorption of carboxylic functionalities, enabling formate production with a partial current density of up to 162 mA cm<small><sup>−2</sup></small>.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 5\",\"pages\":\" 657-665\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00603h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00603h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00603h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Ag、Cu和Sn基电催化剂在气体扩散电极上具有很高的CO2还原动力学和效率。Ag, Cu, Sn硫化物催化剂尤其可以提供改变的电子性质和产物选择性,同时仍然易于在可扩展的合成路线中制造。对比Cu3SnS4、Ag3SnS4、Cu2S、SnS和Ag8SnS6在100 mA cm−2条件下的CO2还原(CO2RR)性能,发现甲酸盐是主要的CO2RR产物,Cu3SnS4的faradaic效率为57%,Ag3SnS4为81%。x射线光电子能谱(XPS)和x射线衍射分析表明,在CO2RR过程中,相应的硫化物形成了Ag3Sn和Cu3Sn合金。而Cu3Sn基电极在−100 mA cm−2下经过2 h后,表面分解为CuO和SnO,去除表层后,XPS可以检测到相应电极表面的金属Ag3Sn位点。利用密度泛函理论,计算了Cu3Sn和Ag3Sn上*H、*CO和*OCHO的结合能,确定了可能的催化位点。因此,发现Sn使Cu和Ag具有高度的亲氧性,从而导致羧基官能团的强吸附,从而在高达162 mA cm−2的分电流密度下生成甲酸盐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ generation of Cu- and Ag–Sn alloys from metal sulfides for CO2 reduction†

Ag, Cu and Sn based electrocatalysts promise high CO2 reduction kinetics and efficiencies on gas diffusion electrodes. Ag, Cu, Sn sulfide catalysts in particular may offer altered electronic properties and product selectivity, while still being easy to manufacture in scaleable synthesis routes. Comparing the CO2 reduction (CO2RR) performance of Cu3SnS4, Ag3SnS4, Cu2S, SnS and Ag8SnS6 at 100 mA cm−2, formate is found to be the primary CO2RR product with a faradaic efficiency of 57% for Cu3SnS4 and 81% for Ag3SnS4. Characterization by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction revealed the formation of Ag3Sn and Cu3Sn alloys from the corresponding sulfide species during CO2RR. But while the Cu3Sn based electrode surface decomposed into CuO and SnO after 2 h at −100 mA cm−2, metallic Ag3Sn sites on the corresponding electrode surface could be detected by XPS after removing the surface layer. Using density functional theory, the binding energies of *H, *CO and *OCHO on Cu3Sn and Ag3Sn were computed to identify possible catalytic sites. Thereby, Sn was found to render both Cu and Ag highly oxophilic resulting in strong adsorption of carboxylic functionalities, enabling formate production with a partial current density of up to 162 mA cm−2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信