基于光电传输门的180nm CMOS跨阻放大器

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sunkyung Lee;Bobin Seo;Somi Park;Sung Min Park
{"title":"基于光电传输门的180nm CMOS跨阻放大器","authors":"Sunkyung Lee;Bobin Seo;Somi Park;Sung Min Park","doi":"10.1109/JSEN.2025.3555304","DOIUrl":null,"url":null,"abstract":"This article presents an optoelectronic transmission-gate-based transimpedance amplifier (OTG-TIA) implemented by using a 0.18-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m complementary metal-oxide-semiconductor (CMOS) technology for short-range light detection and ranging (LiDAR) sensor applications. Particularly, a transmission gate (TG) is strate- gically positioned between the on-chip P+/N-Well/Deep N-Well avalanche photodiode (APD) and the shunt-feedback voltage-mode inverter TIA. This configuration not only decouples the considerable photodiode capacitance from influencing the receiver bandwidth (BW) but also reduces the dc offset currents from the on-chip APD. Moreover, the OTG-TIA features a multistage inverter-chain architecture with dual-feedback resistors to improve the voltage gain and achieve the output impedance matching. Additionally, a TG-based automatic gain control (AGC) is employed alongside the feedback resistor, thereby extending the input dynamic range further. Prototype devices of the proposed OTG-TIA show a measured performance of 67.6-dB<inline-formula> <tex-math>$\\Omega $ </tex-math></inline-formula> transimpedance gain, 2.14-GHz BW, 57.5-dB input dynamic range, and 22.3-mW power consumption from a 1.8-V supply. The core circuit covers an area of <inline-formula> <tex-math>$206\\times 55.5~\\mu $ </tex-math></inline-formula>m2.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 10","pages":"16897-16904"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optoelectronic Transmission-Gate-Based Transimpedance Amplifier in 180 nm CMOS\",\"authors\":\"Sunkyung Lee;Bobin Seo;Somi Park;Sung Min Park\",\"doi\":\"10.1109/JSEN.2025.3555304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an optoelectronic transmission-gate-based transimpedance amplifier (OTG-TIA) implemented by using a 0.18-<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m complementary metal-oxide-semiconductor (CMOS) technology for short-range light detection and ranging (LiDAR) sensor applications. Particularly, a transmission gate (TG) is strate- gically positioned between the on-chip P+/N-Well/Deep N-Well avalanche photodiode (APD) and the shunt-feedback voltage-mode inverter TIA. This configuration not only decouples the considerable photodiode capacitance from influencing the receiver bandwidth (BW) but also reduces the dc offset currents from the on-chip APD. Moreover, the OTG-TIA features a multistage inverter-chain architecture with dual-feedback resistors to improve the voltage gain and achieve the output impedance matching. Additionally, a TG-based automatic gain control (AGC) is employed alongside the feedback resistor, thereby extending the input dynamic range further. Prototype devices of the proposed OTG-TIA show a measured performance of 67.6-dB<inline-formula> <tex-math>$\\\\Omega $ </tex-math></inline-formula> transimpedance gain, 2.14-GHz BW, 57.5-dB input dynamic range, and 22.3-mW power consumption from a 1.8-V supply. The core circuit covers an area of <inline-formula> <tex-math>$206\\\\times 55.5~\\\\mu $ </tex-math></inline-formula>m2.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 10\",\"pages\":\"16897-16904\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948142/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10948142/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于光电传输门的跨阻放大器(OTG-TIA),该放大器采用0.18- $\mu $ m互补金属氧化物半导体(CMOS)技术实现,用于短距离光探测和测距(LiDAR)传感器应用。特别是,在片上P+/ n阱/深n阱雪崩光电二极管(APD)和分流反馈电压模式逆变器TIA之间策略性地放置了传输门(TG)。这种配置不仅可以将可观的光电二极管电容从影响接收器带宽(BW)中解耦,还可以减少片上APD的直流失调电流。此外,OTG-TIA采用多级逆变链结构,采用双反馈电阻,提高了电压增益,实现了输出阻抗匹配。此外,基于tg的自动增益控制(AGC)与反馈电阻一起使用,从而进一步扩展了输入动态范围。OTG-TIA原型器件的测量性能为67.6 db $\Omega $跨阻增益,2.14 ghz BW, 57.5 db输入动态范围,在1.8 v电源下功耗为22.3 mw。核心电路占地面积为$206\times 55.5~\mu $ m2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optoelectronic Transmission-Gate-Based Transimpedance Amplifier in 180 nm CMOS
This article presents an optoelectronic transmission-gate-based transimpedance amplifier (OTG-TIA) implemented by using a 0.18- $\mu $ m complementary metal-oxide-semiconductor (CMOS) technology for short-range light detection and ranging (LiDAR) sensor applications. Particularly, a transmission gate (TG) is strate- gically positioned between the on-chip P+/N-Well/Deep N-Well avalanche photodiode (APD) and the shunt-feedback voltage-mode inverter TIA. This configuration not only decouples the considerable photodiode capacitance from influencing the receiver bandwidth (BW) but also reduces the dc offset currents from the on-chip APD. Moreover, the OTG-TIA features a multistage inverter-chain architecture with dual-feedback resistors to improve the voltage gain and achieve the output impedance matching. Additionally, a TG-based automatic gain control (AGC) is employed alongside the feedback resistor, thereby extending the input dynamic range further. Prototype devices of the proposed OTG-TIA show a measured performance of 67.6-dB $\Omega $ transimpedance gain, 2.14-GHz BW, 57.5-dB input dynamic range, and 22.3-mW power consumption from a 1.8-V supply. The core circuit covers an area of $206\times 55.5~\mu $ m2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信