降低MEMS纤毛水听器低频损耗的优化封装设计

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zimeng Guo;Guojun Zhang;Ruimin Zhang;Yuhao Huang;Jiangjiang Wang;Wenqing Zhang;Wendong Zhang
{"title":"降低MEMS纤毛水听器低频损耗的优化封装设计","authors":"Zimeng Guo;Guojun Zhang;Ruimin Zhang;Yuhao Huang;Jiangjiang Wang;Wenqing Zhang;Wendong Zhang","doi":"10.1109/JSEN.2025.3555804","DOIUrl":null,"url":null,"abstract":"To mitigate the low-frequency loss caused by oil-filled encapsulation in MEMS ciliary hydrophones, this study proposes a novel MEMS vector hydrophone cap design. The design incorporates a stainless-steel mesh cap (SSMC) structure combined with polystyrene thin-film deposition technology, effectively focusing sound. Simulation analyses were conducted to determine the optimal dimensions for the hydrophone cap. Experimental results show that the combination of the hydrophone cap and parylene film achieves an 18-dB sensitivity improvement in the low-frequency range (2080 Hz) compared to oil-filled encapsulation, with an operational bandwidth of 20630 Hz.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 10","pages":"16812-16820"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Encapsulation Design for Reducing Low-Frequency Loss in MEMS Ciliary Hydrophones\",\"authors\":\"Zimeng Guo;Guojun Zhang;Ruimin Zhang;Yuhao Huang;Jiangjiang Wang;Wenqing Zhang;Wendong Zhang\",\"doi\":\"10.1109/JSEN.2025.3555804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To mitigate the low-frequency loss caused by oil-filled encapsulation in MEMS ciliary hydrophones, this study proposes a novel MEMS vector hydrophone cap design. The design incorporates a stainless-steel mesh cap (SSMC) structure combined with polystyrene thin-film deposition technology, effectively focusing sound. Simulation analyses were conducted to determine the optimal dimensions for the hydrophone cap. Experimental results show that the combination of the hydrophone cap and parylene film achieves an 18-dB sensitivity improvement in the low-frequency range (2080 Hz) compared to oil-filled encapsulation, with an operational bandwidth of 20630 Hz.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 10\",\"pages\":\"16812-16820\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948918/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10948918/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了减轻MEMS纤毛水听器中充油封装造成的低频损耗,本研究提出了一种新的MEMS矢量水听器帽设计。该设计将不锈钢网帽(SSMC)结构与聚苯乙烯薄膜沉积技术相结合,有效地聚焦声音。通过仿真分析确定了水听器盖的最佳尺寸。实验结果表明,与充油封装相比,水听器盖与聚对二甲苯膜的组合在低频(2080 Hz)范围内的灵敏度提高了18 db,工作带宽为20630 Hz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Encapsulation Design for Reducing Low-Frequency Loss in MEMS Ciliary Hydrophones
To mitigate the low-frequency loss caused by oil-filled encapsulation in MEMS ciliary hydrophones, this study proposes a novel MEMS vector hydrophone cap design. The design incorporates a stainless-steel mesh cap (SSMC) structure combined with polystyrene thin-film deposition technology, effectively focusing sound. Simulation analyses were conducted to determine the optimal dimensions for the hydrophone cap. Experimental results show that the combination of the hydrophone cap and parylene film achieves an 18-dB sensitivity improvement in the low-frequency range (2080 Hz) compared to oil-filled encapsulation, with an operational bandwidth of 20630 Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信