{"title":"基于鲁棒恢复的卷积神经网络净化:一种具有理论保证的单隐层情况","authors":"Hanxiao Lu;Zeyu Huang;Ren Wang","doi":"10.1109/JSTSP.2025.3549950","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs), one of the key architectures of deep learning models, have achieved superior performance on many machine learning tasks such as image classification, video recognition, and power systems. Despite their success, CNNs can be easily contaminated by natural noises and artificially injected noises such as backdoor attacks. In this paper, we propose a robust recovery method to remove the noise from the potentially contaminated CNNs and provide an exact recovery guarantee on one-hidden-layer non-overlapping CNNs with the rectified linear unit (ReLU) activation function. Our theoretical results show that both CNNs' weights and biases can be exactly recovered under the overparameterization setting with some mild assumptions. The experimental results demonstrate the correctness of the proofs and the effectiveness of the method in both the synthetic environment and the practical neural network setting. Our results also indicate that the proposed method can be extended to multiple-layer CNNs and potentially serve as a defense strategy against backdoor attacks.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"19 3","pages":"507-519"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purification of Contaminated Convolutional Neural Networks via Robust Recovery: An Approach With Theoretical Guarantee in One-Hidden-Layer Case\",\"authors\":\"Hanxiao Lu;Zeyu Huang;Ren Wang\",\"doi\":\"10.1109/JSTSP.2025.3549950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs), one of the key architectures of deep learning models, have achieved superior performance on many machine learning tasks such as image classification, video recognition, and power systems. Despite their success, CNNs can be easily contaminated by natural noises and artificially injected noises such as backdoor attacks. In this paper, we propose a robust recovery method to remove the noise from the potentially contaminated CNNs and provide an exact recovery guarantee on one-hidden-layer non-overlapping CNNs with the rectified linear unit (ReLU) activation function. Our theoretical results show that both CNNs' weights and biases can be exactly recovered under the overparameterization setting with some mild assumptions. The experimental results demonstrate the correctness of the proofs and the effectiveness of the method in both the synthetic environment and the practical neural network setting. Our results also indicate that the proposed method can be extended to multiple-layer CNNs and potentially serve as a defense strategy against backdoor attacks.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":\"19 3\",\"pages\":\"507-519\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10919046/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10919046/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Purification of Contaminated Convolutional Neural Networks via Robust Recovery: An Approach With Theoretical Guarantee in One-Hidden-Layer Case
Convolutional neural networks (CNNs), one of the key architectures of deep learning models, have achieved superior performance on many machine learning tasks such as image classification, video recognition, and power systems. Despite their success, CNNs can be easily contaminated by natural noises and artificially injected noises such as backdoor attacks. In this paper, we propose a robust recovery method to remove the noise from the potentially contaminated CNNs and provide an exact recovery guarantee on one-hidden-layer non-overlapping CNNs with the rectified linear unit (ReLU) activation function. Our theoretical results show that both CNNs' weights and biases can be exactly recovered under the overparameterization setting with some mild assumptions. The experimental results demonstrate the correctness of the proofs and the effectiveness of the method in both the synthetic environment and the practical neural network setting. Our results also indicate that the proposed method can be extended to multiple-layer CNNs and potentially serve as a defense strategy against backdoor attacks.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.