Jens Gregor;Matthew R. Heath;Timothy Deller;Matthew A. Blackston;Paul Hausladen
{"title":"多模态中子层析成像的迭代重建","authors":"Jens Gregor;Matthew R. Heath;Timothy Deller;Matthew A. Blackston;Paul Hausladen","doi":"10.1109/TNS.2025.3554218","DOIUrl":null,"url":null,"abstract":"We describe a unified framework for model-based iterative 3-D reconstruction of multimodal neutron transmission, hydrogen-scatter, and induced-fission images from low resolution data recorded using <inline-formula> <tex-math>$\\mathrm {14.1~\\!\\!\\text {-}\\text{MeV} }$ </tex-math></inline-formula> neutrons and the associated-particle imaging (API) technique. The framework, which was developed to facilitate use in challenging field-deployment scenarios, is centered around physics-based system models and a total variation (TV) constrained implementation of the simultaneous iterative reconstruction technique (SIRT). Modified to solve a statistically weighted least squares (WLS) problem, the SIRT algorithm is accelerated using ordered subsets and Nesterov’s momentum for which we derive a near-optimal value of the governing Lipschitz constant. The approach enables the reconstruction of images that are high resolution compared to the acquired data and is robust to both limited statistics and a limited number of projection angles. Moreover, the framework is fast enough to be practical. Example images are provided that demonstrate both the ability to perform fast-neutron imaging of high-atomic-number materials with low radiation dose and the benefit of multimodal neutron imaging to identify key materials.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 5","pages":"1686-1697"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Reconstruction for Multimodal Neutron Tomography\",\"authors\":\"Jens Gregor;Matthew R. Heath;Timothy Deller;Matthew A. Blackston;Paul Hausladen\",\"doi\":\"10.1109/TNS.2025.3554218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a unified framework for model-based iterative 3-D reconstruction of multimodal neutron transmission, hydrogen-scatter, and induced-fission images from low resolution data recorded using <inline-formula> <tex-math>$\\\\mathrm {14.1~\\\\!\\\\!\\\\text {-}\\\\text{MeV} }$ </tex-math></inline-formula> neutrons and the associated-particle imaging (API) technique. The framework, which was developed to facilitate use in challenging field-deployment scenarios, is centered around physics-based system models and a total variation (TV) constrained implementation of the simultaneous iterative reconstruction technique (SIRT). Modified to solve a statistically weighted least squares (WLS) problem, the SIRT algorithm is accelerated using ordered subsets and Nesterov’s momentum for which we derive a near-optimal value of the governing Lipschitz constant. The approach enables the reconstruction of images that are high resolution compared to the acquired data and is robust to both limited statistics and a limited number of projection angles. Moreover, the framework is fast enough to be practical. Example images are provided that demonstrate both the ability to perform fast-neutron imaging of high-atomic-number materials with low radiation dose and the benefit of multimodal neutron imaging to identify key materials.\",\"PeriodicalId\":13406,\"journal\":{\"name\":\"IEEE Transactions on Nuclear Science\",\"volume\":\"72 5\",\"pages\":\"1686-1697\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nuclear Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938267/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10938267/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Iterative Reconstruction for Multimodal Neutron Tomography
We describe a unified framework for model-based iterative 3-D reconstruction of multimodal neutron transmission, hydrogen-scatter, and induced-fission images from low resolution data recorded using $\mathrm {14.1~\!\!\text {-}\text{MeV} }$ neutrons and the associated-particle imaging (API) technique. The framework, which was developed to facilitate use in challenging field-deployment scenarios, is centered around physics-based system models and a total variation (TV) constrained implementation of the simultaneous iterative reconstruction technique (SIRT). Modified to solve a statistically weighted least squares (WLS) problem, the SIRT algorithm is accelerated using ordered subsets and Nesterov’s momentum for which we derive a near-optimal value of the governing Lipschitz constant. The approach enables the reconstruction of images that are high resolution compared to the acquired data and is robust to both limited statistics and a limited number of projection angles. Moreover, the framework is fast enough to be practical. Example images are provided that demonstrate both the ability to perform fast-neutron imaging of high-atomic-number materials with low radiation dose and the benefit of multimodal neutron imaging to identify key materials.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.