用电阻抗谱法定量细胞体积分数的多功能离心耦合光盘实验室硬件

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Martin Wekesa Sifuna;Daisuke Kawashima;Prima Asmara Sejati;Masahiro Takei
{"title":"用电阻抗谱法定量细胞体积分数的多功能离心耦合光盘实验室硬件","authors":"Martin Wekesa Sifuna;Daisuke Kawashima;Prima Asmara Sejati;Masahiro Takei","doi":"10.1109/TIM.2025.3564018","DOIUrl":null,"url":null,"abstract":"A versatile, centrifuge-coupled lab-on-a-compact disk (ccLoCD) hardware is developed for high through-put quantification of cell volume fractions (<inline-formula> <tex-math>$\\phi $ </tex-math></inline-formula>) by electrical impedance spectroscopy (EIS). The eight-electrode sensor hardware consists of 32-bit ARM microcontroller, impedance converter, and two high-speed analog multiplexer (MUX) modules on a disk mounted on a motor. It was evaluated by quantifying red blood cells (RBCs) of; 1. chicken (<inline-formula> <tex-math>$\\phi _{\\mathrm {chic}}^{\\mathrm {RBC}}$ </tex-math></inline-formula>) mixed with pork RBC with centrifugation and 2. pork RBC (<inline-formula> <tex-math>$\\phi _{\\mathrm {por}}^{\\mathrm {RBC}}$ </tex-math></inline-formula>) as they sediment into the sensor in saline (S), 50% plasma (50-P) and whole blood (WB) for assay of effects of protein concentration (<inline-formula> <tex-math>$\\text {Conc}^{\\mathrm {p}}$ </tex-math></inline-formula>) on erythrocyte sedimentation rates (ESRs). To check quantification accuracy (QA), <inline-formula> <tex-math>$\\phi _{\\mathrm {por}}^{\\mathrm {RBC}}$ </tex-math></inline-formula> (blood hematocrit) in cardiopulmonary bypass (CPB) was measured in comparison to <inline-formula> <tex-math>$\\phi _{\\mathrm {por}}^{\\mathrm {RBC}}$ </tex-math></inline-formula> from standard microcentrifuge (MC) method at increasing plasma volumes (<inline-formula> <tex-math>$v_{\\mathrm {p}}$ </tex-math></inline-formula>). Blood impedance, measured between 10 and 100 kHz, was analyzed by distribution of relaxation times (DRTs) and regression modeling to quantify <inline-formula> <tex-math>$\\phi $ </tex-math></inline-formula> by correlating (<inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula>) amplitude maxima (<inline-formula> <tex-math>$\\gamma _{\\max }$ </tex-math></inline-formula>) to <inline-formula> <tex-math>$\\phi $ </tex-math></inline-formula>. From results at characteristic relaxation time <inline-formula> <tex-math>$\\tau _{\\mathrm {c}} = 1\\times 10^{-5}$ </tex-math></inline-formula> s, differences in <inline-formula> <tex-math>$\\gamma _{\\max }$ </tex-math></inline-formula> before and after centrifugation were statistically significant (<inline-formula> <tex-math>$p \\lt 0.05$ </tex-math></inline-formula>) with centrifugation increasing QA thus raising <inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula> from 0.0242 to 0.989. In 15 min, differences in <inline-formula> <tex-math>$\\phi _{\\mathrm {por}}^{\\mathrm {RBC}}$ </tex-math></inline-formula> for RBC sedimentation in S, 50%-P, and WB were also statistically significant (<inline-formula> <tex-math>$p \\lt 0.05$ </tex-math></inline-formula>) showing capacity of hardware to capture <inline-formula> <tex-math>$\\text {Conc}^{\\mathrm {p}}$ </tex-math></inline-formula> effects. In QA analysis, hardware-based <inline-formula> <tex-math>$\\phi _{\\mathrm {por}}^{\\mathrm {RBC}}$ </tex-math></inline-formula> had low 0.73% error relative to MC-based <inline-formula> <tex-math>$\\phi _{\\mathrm {por}}^{\\mathrm {RBC}}$ </tex-math></inline-formula>. The <inline-formula> <tex-math>$\\phi _{\\mathrm {por}}^{\\mathrm {RBC}}$ </tex-math></inline-formula> strongly correlated with <inline-formula> <tex-math>$v_{\\mathrm {p}}$ </tex-math></inline-formula> in flow (<inline-formula> <tex-math>$R^{2} =0.9937$ </tex-math></inline-formula>) which shows hardware’s potential for low cost measurements of cell <inline-formula> <tex-math>$\\phi $ </tex-math></inline-formula>.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-9"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Versatile Centrifuge-Coupled Lab-on-a-Compact Disk Hardware for Quantification of Cell Volume Fractions by Electrical Impedance Spectroscopy\",\"authors\":\"Martin Wekesa Sifuna;Daisuke Kawashima;Prima Asmara Sejati;Masahiro Takei\",\"doi\":\"10.1109/TIM.2025.3564018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A versatile, centrifuge-coupled lab-on-a-compact disk (ccLoCD) hardware is developed for high through-put quantification of cell volume fractions (<inline-formula> <tex-math>$\\\\phi $ </tex-math></inline-formula>) by electrical impedance spectroscopy (EIS). The eight-electrode sensor hardware consists of 32-bit ARM microcontroller, impedance converter, and two high-speed analog multiplexer (MUX) modules on a disk mounted on a motor. It was evaluated by quantifying red blood cells (RBCs) of; 1. chicken (<inline-formula> <tex-math>$\\\\phi _{\\\\mathrm {chic}}^{\\\\mathrm {RBC}}$ </tex-math></inline-formula>) mixed with pork RBC with centrifugation and 2. pork RBC (<inline-formula> <tex-math>$\\\\phi _{\\\\mathrm {por}}^{\\\\mathrm {RBC}}$ </tex-math></inline-formula>) as they sediment into the sensor in saline (S), 50% plasma (50-P) and whole blood (WB) for assay of effects of protein concentration (<inline-formula> <tex-math>$\\\\text {Conc}^{\\\\mathrm {p}}$ </tex-math></inline-formula>) on erythrocyte sedimentation rates (ESRs). To check quantification accuracy (QA), <inline-formula> <tex-math>$\\\\phi _{\\\\mathrm {por}}^{\\\\mathrm {RBC}}$ </tex-math></inline-formula> (blood hematocrit) in cardiopulmonary bypass (CPB) was measured in comparison to <inline-formula> <tex-math>$\\\\phi _{\\\\mathrm {por}}^{\\\\mathrm {RBC}}$ </tex-math></inline-formula> from standard microcentrifuge (MC) method at increasing plasma volumes (<inline-formula> <tex-math>$v_{\\\\mathrm {p}}$ </tex-math></inline-formula>). Blood impedance, measured between 10 and 100 kHz, was analyzed by distribution of relaxation times (DRTs) and regression modeling to quantify <inline-formula> <tex-math>$\\\\phi $ </tex-math></inline-formula> by correlating (<inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula>) amplitude maxima (<inline-formula> <tex-math>$\\\\gamma _{\\\\max }$ </tex-math></inline-formula>) to <inline-formula> <tex-math>$\\\\phi $ </tex-math></inline-formula>. From results at characteristic relaxation time <inline-formula> <tex-math>$\\\\tau _{\\\\mathrm {c}} = 1\\\\times 10^{-5}$ </tex-math></inline-formula> s, differences in <inline-formula> <tex-math>$\\\\gamma _{\\\\max }$ </tex-math></inline-formula> before and after centrifugation were statistically significant (<inline-formula> <tex-math>$p \\\\lt 0.05$ </tex-math></inline-formula>) with centrifugation increasing QA thus raising <inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula> from 0.0242 to 0.989. In 15 min, differences in <inline-formula> <tex-math>$\\\\phi _{\\\\mathrm {por}}^{\\\\mathrm {RBC}}$ </tex-math></inline-formula> for RBC sedimentation in S, 50%-P, and WB were also statistically significant (<inline-formula> <tex-math>$p \\\\lt 0.05$ </tex-math></inline-formula>) showing capacity of hardware to capture <inline-formula> <tex-math>$\\\\text {Conc}^{\\\\mathrm {p}}$ </tex-math></inline-formula> effects. In QA analysis, hardware-based <inline-formula> <tex-math>$\\\\phi _{\\\\mathrm {por}}^{\\\\mathrm {RBC}}$ </tex-math></inline-formula> had low 0.73% error relative to MC-based <inline-formula> <tex-math>$\\\\phi _{\\\\mathrm {por}}^{\\\\mathrm {RBC}}$ </tex-math></inline-formula>. The <inline-formula> <tex-math>$\\\\phi _{\\\\mathrm {por}}^{\\\\mathrm {RBC}}$ </tex-math></inline-formula> strongly correlated with <inline-formula> <tex-math>$v_{\\\\mathrm {p}}$ </tex-math></inline-formula> in flow (<inline-formula> <tex-math>$R^{2} =0.9937$ </tex-math></inline-formula>) which shows hardware’s potential for low cost measurements of cell <inline-formula> <tex-math>$\\\\phi $ </tex-math></inline-formula>.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"74 \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10976447/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10976447/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

通过电阻抗谱(EIS),开发了一种多功能的、离心机耦合的光盘实验室(ccLoCD)硬件,用于高通量定量细胞体积分数($\phi $)。八电极传感器硬件由32位ARM微控制器、阻抗转换器和安装在电机上的磁盘上的两个高速模拟多路复用器(MUX)模块组成。通过定量测定红细胞(rbc)来评价;1. 鸡肉($\phi _{\mathrm {chic}}^{\mathrm {RBC}}$)与猪肉红细胞离心混合;猪肉红细胞($\phi _{\mathrm {por}}^{\mathrm {RBC}}$),因为他们沉淀到传感器在盐水(S), 50% plasma (50-P) and whole blood (WB) for assay of effects of protein concentration ( $\text {Conc}^{\mathrm {p}}$ ) on erythrocyte sedimentation rates (ESRs). To check quantification accuracy (QA), $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ (blood hematocrit) in cardiopulmonary bypass (CPB) was measured in comparison to $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ from standard microcentrifuge (MC) method at increasing plasma volumes ( $v_{\mathrm {p}}$ ). Blood impedance, measured between 10 and 100 kHz, was analyzed by distribution of relaxation times (DRTs) and regression modeling to quantify $\phi $ by correlating ( $R^{2}$ ) amplitude maxima ( $\gamma _{\max }$ ) to $\phi $ . From results at characteristic relaxation time $\tau _{\mathrm {c}} = 1\times 10^{-5}$ s, differences in $\gamma _{\max }$ before and after centrifugation were statistically significant ( $p \lt 0.05$ ) with centrifugation increasing QA thus raising $R^{2}$ from 0.0242 to 0.989. In 15 min, differences in $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ for RBC sedimentation in S, 50%-P, and WB were also statistically significant ( $p \lt 0.05$ ) showing capacity of hardware to capture $\text {Conc}^{\mathrm {p}}$ effects. In QA analysis, hardware-based $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ had low 0.73% error relative to MC-based $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ . The $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ strongly correlated with $v_{\mathrm {p}}$ in flow ( $R^{2} =0.9937$ ) which shows hardware’s potential for low cost measurements of cell $\phi $ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Versatile Centrifuge-Coupled Lab-on-a-Compact Disk Hardware for Quantification of Cell Volume Fractions by Electrical Impedance Spectroscopy
A versatile, centrifuge-coupled lab-on-a-compact disk (ccLoCD) hardware is developed for high through-put quantification of cell volume fractions ( $\phi $ ) by electrical impedance spectroscopy (EIS). The eight-electrode sensor hardware consists of 32-bit ARM microcontroller, impedance converter, and two high-speed analog multiplexer (MUX) modules on a disk mounted on a motor. It was evaluated by quantifying red blood cells (RBCs) of; 1. chicken ( $\phi _{\mathrm {chic}}^{\mathrm {RBC}}$ ) mixed with pork RBC with centrifugation and 2. pork RBC ( $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ ) as they sediment into the sensor in saline (S), 50% plasma (50-P) and whole blood (WB) for assay of effects of protein concentration ( $\text {Conc}^{\mathrm {p}}$ ) on erythrocyte sedimentation rates (ESRs). To check quantification accuracy (QA), $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ (blood hematocrit) in cardiopulmonary bypass (CPB) was measured in comparison to $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ from standard microcentrifuge (MC) method at increasing plasma volumes ( $v_{\mathrm {p}}$ ). Blood impedance, measured between 10 and 100 kHz, was analyzed by distribution of relaxation times (DRTs) and regression modeling to quantify $\phi $ by correlating ( $R^{2}$ ) amplitude maxima ( $\gamma _{\max }$ ) to $\phi $ . From results at characteristic relaxation time $\tau _{\mathrm {c}} = 1\times 10^{-5}$ s, differences in $\gamma _{\max }$ before and after centrifugation were statistically significant ( $p \lt 0.05$ ) with centrifugation increasing QA thus raising $R^{2}$ from 0.0242 to 0.989. In 15 min, differences in $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ for RBC sedimentation in S, 50%-P, and WB were also statistically significant ( $p \lt 0.05$ ) showing capacity of hardware to capture $\text {Conc}^{\mathrm {p}}$ effects. In QA analysis, hardware-based $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ had low 0.73% error relative to MC-based $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ . The $\phi _{\mathrm {por}}^{\mathrm {RBC}}$ strongly correlated with $v_{\mathrm {p}}$ in flow ( $R^{2} =0.9937$ ) which shows hardware’s potential for low cost measurements of cell $\phi $ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信