积分的拉普拉斯对偶

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Jean B. Lasserre
{"title":"积分的拉普拉斯对偶","authors":"Jean B. Lasserre","doi":"10.1109/LCSYS.2025.3567851","DOIUrl":null,"url":null,"abstract":"We consider the integral <inline-formula> <tex-math>$v\\text {(}y\\text {)}=\\int _{K_{y}}f\\text {(}\\mathbf {x}\\text {)}d\\mathbf {x}$ </tex-math></inline-formula> on a domain <inline-formula> <tex-math>$K_{y}=\\{\\mathbf {x}\\in \\mathbb {R}^{d}~:~g\\text {(}\\mathbf {x}\\text {)}\\leq y\\}$ </tex-math></inline-formula>, where g is nonnegative and <inline-formula> <tex-math>$K_{y}$ </tex-math></inline-formula> is compact for all <inline-formula> <tex-math>$y\\in [0,+\\infty \\text {)}$ </tex-math></inline-formula>. Under some assumptions, we show that for every <inline-formula> <tex-math>$y\\in \\text {(}0,\\infty \\text {)}$ </tex-math></inline-formula> there exists a distinguished scalar <inline-formula> <tex-math>$\\lambda _{y}\\in \\text {(}0,+\\infty \\text {)}$ </tex-math></inline-formula> such that <inline-formula> <tex-math>$v\\text {(}y\\text {)}=\\int _{\\mathbb {R}^{d}}f\\text {(}\\mathbf {x}\\text {)}\\exp \\text {(} - \\lambda _{y}\\,g\\text {(}\\mathbf {x}\\text {)}\\text {)}\\,d\\mathbf {x}$ </tex-math></inline-formula>, which is the counterpart analogue for integration of Lagrangian duality for optimization. A crucial ingredient is the Laplace transform, the analogue for integration of Legendre-Fenchel transform in optimization. In particular, if both f and g are positively homogeneous then <inline-formula> <tex-math>$\\lambda _{y}$ </tex-math></inline-formula> is a simple explicitly rational function of y. In addition if g is quadratic form then computing <inline-formula> <tex-math>$v\\text {(}y\\text {)}$ </tex-math></inline-formula> reduces to computing the integral of f with respect to a specific Gaussian measure for which exact and approximate numerical methods (e.g. cubatures) are available.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"168-173"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Laplace Duality for Integration\",\"authors\":\"Jean B. Lasserre\",\"doi\":\"10.1109/LCSYS.2025.3567851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the integral <inline-formula> <tex-math>$v\\\\text {(}y\\\\text {)}=\\\\int _{K_{y}}f\\\\text {(}\\\\mathbf {x}\\\\text {)}d\\\\mathbf {x}$ </tex-math></inline-formula> on a domain <inline-formula> <tex-math>$K_{y}=\\\\{\\\\mathbf {x}\\\\in \\\\mathbb {R}^{d}~:~g\\\\text {(}\\\\mathbf {x}\\\\text {)}\\\\leq y\\\\}$ </tex-math></inline-formula>, where g is nonnegative and <inline-formula> <tex-math>$K_{y}$ </tex-math></inline-formula> is compact for all <inline-formula> <tex-math>$y\\\\in [0,+\\\\infty \\\\text {)}$ </tex-math></inline-formula>. Under some assumptions, we show that for every <inline-formula> <tex-math>$y\\\\in \\\\text {(}0,\\\\infty \\\\text {)}$ </tex-math></inline-formula> there exists a distinguished scalar <inline-formula> <tex-math>$\\\\lambda _{y}\\\\in \\\\text {(}0,+\\\\infty \\\\text {)}$ </tex-math></inline-formula> such that <inline-formula> <tex-math>$v\\\\text {(}y\\\\text {)}=\\\\int _{\\\\mathbb {R}^{d}}f\\\\text {(}\\\\mathbf {x}\\\\text {)}\\\\exp \\\\text {(} - \\\\lambda _{y}\\\\,g\\\\text {(}\\\\mathbf {x}\\\\text {)}\\\\text {)}\\\\,d\\\\mathbf {x}$ </tex-math></inline-formula>, which is the counterpart analogue for integration of Lagrangian duality for optimization. A crucial ingredient is the Laplace transform, the analogue for integration of Legendre-Fenchel transform in optimization. In particular, if both f and g are positively homogeneous then <inline-formula> <tex-math>$\\\\lambda _{y}$ </tex-math></inline-formula> is a simple explicitly rational function of y. In addition if g is quadratic form then computing <inline-formula> <tex-math>$v\\\\text {(}y\\\\text {)}$ </tex-math></inline-formula> reduces to computing the integral of f with respect to a specific Gaussian measure for which exact and approximate numerical methods (e.g. cubatures) are available.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"168-173\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10990231/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10990231/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑域$K_{y}=\{\mathbf {x}\in \mathbb {R}^{d}~:~g\text {(}\mathbf {x}\text {)}\leq y\}$上的积分$v\text {(}y\text {)}=\int _{K_{y}}f\text {(}\mathbf {x}\text {)}d\mathbf {x}$,其中g是非负的并且$K_{y}$对于所有$y\in [0,+\infty \text {)}$都是紧的。在某些假设下,我们证明了对于每个$y\in \text {(}0,\infty \text {)}$存在一个区分标量$\lambda _{y}\in \text {(}0,+\infty \text {)}$,使得$v\text {(}y\text {)}=\int _{\mathbb {R}^{d}}f\text {(}\mathbf {x}\text {)}\exp \text {(} - \lambda _{y}\,g\text {(}\mathbf {x}\text {)}\text {)}\,d\mathbf {x}$,这是拉格朗日对偶积分优化的对应模拟。一个至关重要的成分是拉普拉斯变换,它是优化中的勒让德-芬切尔变换积分的类似物。特别地,如果f和g都是正齐次的,那么$\lambda _{y}$是y的一个简单的显式有理函数。此外,如果g是二次形式,那么计算$v\text {(}y\text {)}$减少到计算f相对于一个特定的高斯测度的积分,其中精确和近似的数值方法(例如,文化)是可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Laplace Duality for Integration
We consider the integral $v\text {(}y\text {)}=\int _{K_{y}}f\text {(}\mathbf {x}\text {)}d\mathbf {x}$ on a domain $K_{y}=\{\mathbf {x}\in \mathbb {R}^{d}~:~g\text {(}\mathbf {x}\text {)}\leq y\}$ , where g is nonnegative and $K_{y}$ is compact for all $y\in [0,+\infty \text {)}$ . Under some assumptions, we show that for every $y\in \text {(}0,\infty \text {)}$ there exists a distinguished scalar $\lambda _{y}\in \text {(}0,+\infty \text {)}$ such that $v\text {(}y\text {)}=\int _{\mathbb {R}^{d}}f\text {(}\mathbf {x}\text {)}\exp \text {(} - \lambda _{y}\,g\text {(}\mathbf {x}\text {)}\text {)}\,d\mathbf {x}$ , which is the counterpart analogue for integration of Lagrangian duality for optimization. A crucial ingredient is the Laplace transform, the analogue for integration of Legendre-Fenchel transform in optimization. In particular, if both f and g are positively homogeneous then $\lambda _{y}$ is a simple explicitly rational function of y. In addition if g is quadratic form then computing $v\text {(}y\text {)}$ reduces to computing the integral of f with respect to a specific Gaussian measure for which exact and approximate numerical methods (e.g. cubatures) are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信