{"title":"积分的拉普拉斯对偶","authors":"Jean B. Lasserre","doi":"10.1109/LCSYS.2025.3567851","DOIUrl":null,"url":null,"abstract":"We consider the integral <inline-formula> <tex-math>$v\\text {(}y\\text {)}=\\int _{K_{y}}f\\text {(}\\mathbf {x}\\text {)}d\\mathbf {x}$ </tex-math></inline-formula> on a domain <inline-formula> <tex-math>$K_{y}=\\{\\mathbf {x}\\in \\mathbb {R}^{d}~:~g\\text {(}\\mathbf {x}\\text {)}\\leq y\\}$ </tex-math></inline-formula>, where g is nonnegative and <inline-formula> <tex-math>$K_{y}$ </tex-math></inline-formula> is compact for all <inline-formula> <tex-math>$y\\in [0,+\\infty \\text {)}$ </tex-math></inline-formula>. Under some assumptions, we show that for every <inline-formula> <tex-math>$y\\in \\text {(}0,\\infty \\text {)}$ </tex-math></inline-formula> there exists a distinguished scalar <inline-formula> <tex-math>$\\lambda _{y}\\in \\text {(}0,+\\infty \\text {)}$ </tex-math></inline-formula> such that <inline-formula> <tex-math>$v\\text {(}y\\text {)}=\\int _{\\mathbb {R}^{d}}f\\text {(}\\mathbf {x}\\text {)}\\exp \\text {(} - \\lambda _{y}\\,g\\text {(}\\mathbf {x}\\text {)}\\text {)}\\,d\\mathbf {x}$ </tex-math></inline-formula>, which is the counterpart analogue for integration of Lagrangian duality for optimization. A crucial ingredient is the Laplace transform, the analogue for integration of Legendre-Fenchel transform in optimization. In particular, if both f and g are positively homogeneous then <inline-formula> <tex-math>$\\lambda _{y}$ </tex-math></inline-formula> is a simple explicitly rational function of y. In addition if g is quadratic form then computing <inline-formula> <tex-math>$v\\text {(}y\\text {)}$ </tex-math></inline-formula> reduces to computing the integral of f with respect to a specific Gaussian measure for which exact and approximate numerical methods (e.g. cubatures) are available.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"168-173"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Laplace Duality for Integration\",\"authors\":\"Jean B. Lasserre\",\"doi\":\"10.1109/LCSYS.2025.3567851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the integral <inline-formula> <tex-math>$v\\\\text {(}y\\\\text {)}=\\\\int _{K_{y}}f\\\\text {(}\\\\mathbf {x}\\\\text {)}d\\\\mathbf {x}$ </tex-math></inline-formula> on a domain <inline-formula> <tex-math>$K_{y}=\\\\{\\\\mathbf {x}\\\\in \\\\mathbb {R}^{d}~:~g\\\\text {(}\\\\mathbf {x}\\\\text {)}\\\\leq y\\\\}$ </tex-math></inline-formula>, where g is nonnegative and <inline-formula> <tex-math>$K_{y}$ </tex-math></inline-formula> is compact for all <inline-formula> <tex-math>$y\\\\in [0,+\\\\infty \\\\text {)}$ </tex-math></inline-formula>. Under some assumptions, we show that for every <inline-formula> <tex-math>$y\\\\in \\\\text {(}0,\\\\infty \\\\text {)}$ </tex-math></inline-formula> there exists a distinguished scalar <inline-formula> <tex-math>$\\\\lambda _{y}\\\\in \\\\text {(}0,+\\\\infty \\\\text {)}$ </tex-math></inline-formula> such that <inline-formula> <tex-math>$v\\\\text {(}y\\\\text {)}=\\\\int _{\\\\mathbb {R}^{d}}f\\\\text {(}\\\\mathbf {x}\\\\text {)}\\\\exp \\\\text {(} - \\\\lambda _{y}\\\\,g\\\\text {(}\\\\mathbf {x}\\\\text {)}\\\\text {)}\\\\,d\\\\mathbf {x}$ </tex-math></inline-formula>, which is the counterpart analogue for integration of Lagrangian duality for optimization. A crucial ingredient is the Laplace transform, the analogue for integration of Legendre-Fenchel transform in optimization. In particular, if both f and g are positively homogeneous then <inline-formula> <tex-math>$\\\\lambda _{y}$ </tex-math></inline-formula> is a simple explicitly rational function of y. In addition if g is quadratic form then computing <inline-formula> <tex-math>$v\\\\text {(}y\\\\text {)}$ </tex-math></inline-formula> reduces to computing the integral of f with respect to a specific Gaussian measure for which exact and approximate numerical methods (e.g. cubatures) are available.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"168-173\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10990231/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10990231/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
We consider the integral $v\text {(}y\text {)}=\int _{K_{y}}f\text {(}\mathbf {x}\text {)}d\mathbf {x}$ on a domain $K_{y}=\{\mathbf {x}\in \mathbb {R}^{d}~:~g\text {(}\mathbf {x}\text {)}\leq y\}$ , where g is nonnegative and $K_{y}$ is compact for all $y\in [0,+\infty \text {)}$ . Under some assumptions, we show that for every $y\in \text {(}0,\infty \text {)}$ there exists a distinguished scalar $\lambda _{y}\in \text {(}0,+\infty \text {)}$ such that $v\text {(}y\text {)}=\int _{\mathbb {R}^{d}}f\text {(}\mathbf {x}\text {)}\exp \text {(} - \lambda _{y}\,g\text {(}\mathbf {x}\text {)}\text {)}\,d\mathbf {x}$ , which is the counterpart analogue for integration of Lagrangian duality for optimization. A crucial ingredient is the Laplace transform, the analogue for integration of Legendre-Fenchel transform in optimization. In particular, if both f and g are positively homogeneous then $\lambda _{y}$ is a simple explicitly rational function of y. In addition if g is quadratic form then computing $v\text {(}y\text {)}$ reduces to computing the integral of f with respect to a specific Gaussian measure for which exact and approximate numerical methods (e.g. cubatures) are available.