严格无源系统频响函数的核估计

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Sadegh Ebrahimkhani;John Lataire
{"title":"严格无源系统频响函数的核估计","authors":"Sadegh Ebrahimkhani;John Lataire","doi":"10.1109/LCSYS.2025.3567620","DOIUrl":null,"url":null,"abstract":"Estimating the Frequency Response Function (FRF) of Linear Time-Invariant (LTI) systems is critical for many applications. Conventional methods often neglect physical constraints such as strict passivity-a key physical constraint that ensures energy dissipation. This letter introduces a non-parametric kernel-based method that uses prior knowledge of system passivity. The estimator is developed within a vector-valued Reproducing Kernel Hilbert Space (RKHS) framework. In this framework, the infinite-dimensional problem is reformulated as a finite-dimensional quadratic optimization problem. This formulation ensures that the estimated FRF meets strict passivity (i.e., the real part is positive) and stability. The method applies to both continuous and discrete-time systems. Integrating these physical constraints yields more robust, interpretable, and accurate FRF models, as confirmed by numerical simulations.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"162-167"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel-Based Estimation of Frequency Response Function of Strictly Passive Systems\",\"authors\":\"Sadegh Ebrahimkhani;John Lataire\",\"doi\":\"10.1109/LCSYS.2025.3567620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the Frequency Response Function (FRF) of Linear Time-Invariant (LTI) systems is critical for many applications. Conventional methods often neglect physical constraints such as strict passivity-a key physical constraint that ensures energy dissipation. This letter introduces a non-parametric kernel-based method that uses prior knowledge of system passivity. The estimator is developed within a vector-valued Reproducing Kernel Hilbert Space (RKHS) framework. In this framework, the infinite-dimensional problem is reformulated as a finite-dimensional quadratic optimization problem. This formulation ensures that the estimated FRF meets strict passivity (i.e., the real part is positive) and stability. The method applies to both continuous and discrete-time systems. Integrating these physical constraints yields more robust, interpretable, and accurate FRF models, as confirmed by numerical simulations.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"162-167\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10990161/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10990161/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

估计线性时不变系统的频响函数(FRF)在许多应用中是至关重要的。传统的方法常常忽略物理约束,例如严格的被动性,这是保证能量耗散的关键物理约束。本文介绍了一种基于非参数核的方法,该方法利用系统无源性的先验知识。在向量值再现核希尔伯特空间(RKHS)框架内建立了该估计量。在这个框架中,无限维问题被重新表述为有限维二次优化问题。该公式保证了估计的频响满足严格的无源性(即实部为正)和稳定性。该方法适用于连续系统和离散系统。正如数值模拟所证实的那样,整合这些物理约束可以产生更健壮、可解释和准确的频响模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel-Based Estimation of Frequency Response Function of Strictly Passive Systems
Estimating the Frequency Response Function (FRF) of Linear Time-Invariant (LTI) systems is critical for many applications. Conventional methods often neglect physical constraints such as strict passivity-a key physical constraint that ensures energy dissipation. This letter introduces a non-parametric kernel-based method that uses prior knowledge of system passivity. The estimator is developed within a vector-valued Reproducing Kernel Hilbert Space (RKHS) framework. In this framework, the infinite-dimensional problem is reformulated as a finite-dimensional quadratic optimization problem. This formulation ensures that the estimated FRF meets strict passivity (i.e., the real part is positive) and stability. The method applies to both continuous and discrete-time systems. Integrating these physical constraints yields more robust, interpretable, and accurate FRF models, as confirmed by numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信