基于电阻的时域CMOS温度传感器+0.9°C/−0.9°C误差(3σ)−40°C至125°C

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dongjian Chen;Luhan Yang;Yuheng Zhang;Zhong Zhang;Kejun Wu;Yan Wang;Ning Ning;Qi Yu;Jing Li
{"title":"基于电阻的时域CMOS温度传感器+0.9°C/−0.9°C误差(3σ)−40°C至125°C","authors":"Dongjian Chen;Luhan Yang;Yuheng Zhang;Zhong Zhang;Kejun Wu;Yan Wang;Ning Ning;Qi Yu;Jing Li","doi":"10.1109/JSEN.2025.3554330","DOIUrl":null,"url":null,"abstract":"As the functionality of system-on-chip (SoC) devices continues to increase, the issue of chip heating becomes more severe. Real-time temperature detection with on-chip temperature sensors for effective thermal management has become increasingly important. This article presents a CMOS temperature-to-digital converter based on resistor ratios. It converts temperature to frequency by two relaxation oscillators (ROSCs) of identical structure, utilizing resistors with different temperature coefficients, thereby quantizing the temperature in the time domain. It effectively integrates the advantages of resistor sensing and time-domain quantization, including high accuracy, high flexibility, high compaction, and low-power noise sensitivity. The prototype was fabricated using a 130-nm BCD process, occupying a compact area of 0.025 mm2. It achieves a resolution of 86 mK and an inaccuracy (<inline-formula> <tex-math>$3\\sigma $ </tex-math></inline-formula>) of <inline-formula> <tex-math>$\\pm 0.9~^{\\circ }$ </tex-math></inline-formula> C following two-point calibration across the temperature range of <inline-formula> <tex-math>$- 40~^{\\circ }$ </tex-math></inline-formula> C to 125 ° C. The supply sensitivity remains below 4 ° C/V for voltage levels ranging from 1.3 to 1.6 V. The temperature sensor works without external reference voltage or clock, features a conversion time of 0.12 ms, and consumes <inline-formula> <tex-math>$169~\\mu $ </tex-math></inline-formula> W at 25 ° C. It is particularly suitable for applications in SoC.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 10","pages":"17374-17383"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Resistor-Based Time-Domain CMOS Temperature Sensor With +0.9 °C/−0.9 °C Inaccuracy (3σ) From −40 °C to 125 °C\",\"authors\":\"Dongjian Chen;Luhan Yang;Yuheng Zhang;Zhong Zhang;Kejun Wu;Yan Wang;Ning Ning;Qi Yu;Jing Li\",\"doi\":\"10.1109/JSEN.2025.3554330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the functionality of system-on-chip (SoC) devices continues to increase, the issue of chip heating becomes more severe. Real-time temperature detection with on-chip temperature sensors for effective thermal management has become increasingly important. This article presents a CMOS temperature-to-digital converter based on resistor ratios. It converts temperature to frequency by two relaxation oscillators (ROSCs) of identical structure, utilizing resistors with different temperature coefficients, thereby quantizing the temperature in the time domain. It effectively integrates the advantages of resistor sensing and time-domain quantization, including high accuracy, high flexibility, high compaction, and low-power noise sensitivity. The prototype was fabricated using a 130-nm BCD process, occupying a compact area of 0.025 mm2. It achieves a resolution of 86 mK and an inaccuracy (<inline-formula> <tex-math>$3\\\\sigma $ </tex-math></inline-formula>) of <inline-formula> <tex-math>$\\\\pm 0.9~^{\\\\circ }$ </tex-math></inline-formula> C following two-point calibration across the temperature range of <inline-formula> <tex-math>$- 40~^{\\\\circ }$ </tex-math></inline-formula> C to 125 ° C. The supply sensitivity remains below 4 ° C/V for voltage levels ranging from 1.3 to 1.6 V. The temperature sensor works without external reference voltage or clock, features a conversion time of 0.12 ms, and consumes <inline-formula> <tex-math>$169~\\\\mu $ </tex-math></inline-formula> W at 25 ° C. It is particularly suitable for applications in SoC.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 10\",\"pages\":\"17374-17383\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945928/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10945928/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着片上系统(SoC)器件功能的不断增加,芯片发热问题变得越来越严重。利用片上温度传感器进行实时温度检测以实现有效的热管理已变得越来越重要。本文提出了一种基于电阻比的CMOS温度-数字转换器。它通过两个结构相同的弛豫振荡器(rosc),利用不同温度系数的电阻,将温度转换为频率,从而在时域上量化温度。它有效地集成了电阻感测和时域量化的优点,包括高精度、高灵活性、高压实度和低功耗噪声灵敏度。该原型机采用130纳米的BCD工艺制造,占地面积为0.025 mm2。在温度范围为$- 40~^{\circ }$ C至125°C的两点校准后,它的分辨率为86 mK,误差($3\sigma $)为$\pm 0.9~^{\circ }$ C。对于1.3至1.6 V的电压水平,电源灵敏度保持在4°C/V以下。该温度传感器无需外部参考电压或时钟,转换时间为0.12 ms,在25℃时功耗为$169~\mu $ W,特别适用于SoC中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Resistor-Based Time-Domain CMOS Temperature Sensor With +0.9 °C/−0.9 °C Inaccuracy (3σ) From −40 °C to 125 °C
As the functionality of system-on-chip (SoC) devices continues to increase, the issue of chip heating becomes more severe. Real-time temperature detection with on-chip temperature sensors for effective thermal management has become increasingly important. This article presents a CMOS temperature-to-digital converter based on resistor ratios. It converts temperature to frequency by two relaxation oscillators (ROSCs) of identical structure, utilizing resistors with different temperature coefficients, thereby quantizing the temperature in the time domain. It effectively integrates the advantages of resistor sensing and time-domain quantization, including high accuracy, high flexibility, high compaction, and low-power noise sensitivity. The prototype was fabricated using a 130-nm BCD process, occupying a compact area of 0.025 mm2. It achieves a resolution of 86 mK and an inaccuracy ( $3\sigma $ ) of $\pm 0.9~^{\circ }$ C following two-point calibration across the temperature range of $- 40~^{\circ }$ C to 125 ° C. The supply sensitivity remains below 4 ° C/V for voltage levels ranging from 1.3 to 1.6 V. The temperature sensor works without external reference voltage or clock, features a conversion time of 0.12 ms, and consumes $169~\mu $ W at 25 ° C. It is particularly suitable for applications in SoC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信