生物传感器用铝掺杂ZnO纳米棒的制备与表征

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hsin-Yu Chou;Yu-Wei Chen;Chang-Tze Ricky Yu;Jo-Mei Maureen Chen;Wei-Hsiang Chiang;Anoop Kumar Singh;Po-Kai Kung;Jung-Lung Chiang;Dong-Sing Wuu
{"title":"生物传感器用铝掺杂ZnO纳米棒的制备与表征","authors":"Hsin-Yu Chou;Yu-Wei Chen;Chang-Tze Ricky Yu;Jo-Mei Maureen Chen;Wei-Hsiang Chiang;Anoop Kumar Singh;Po-Kai Kung;Jung-Lung Chiang;Dong-Sing Wuu","doi":"10.1109/JSEN.2025.3552595","DOIUrl":null,"url":null,"abstract":"In this study, we prepared various aluminum-doped zinc oxide (AZO) surface structures via chemical bath deposition (CBD) for use in biomedical sensors. Indium tin oxide (ITO) conductive films were deposited on glass substrates via electron beam evaporation, and AZO nanorods were subsequently grown on the ITO layer using CBD at a bath temperature of <inline-formula> <tex-math>$90~^{\\circ }$ </tex-math></inline-formula>C. The AZO/ITO sensor electrode was further optimized through furnace annealing, improving its structural and electrical properties. This nanostructure enhances the ability of biomedical sensor films to adsorb H+ and OH<inline-formula> <tex-math>${}^{-}$ </tex-math></inline-formula> ions by increasing the reactive surface area between the film and the solution under test, thereby improving pH sensitivity. In addition, we used an extended gate field effect transistor (EGFET) module to measure glucose concentrations ranging from 0 to 10 mg/ml, achieving sensitivity values of 55.4 mV/pH and 8.07 mA/mg<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>ml<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula>. These findings have significant implications for the future development of blood glucose monitoring and microenvironmental sensing systems.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 10","pages":"16648-16657"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Characterization of Aluminum-Doped ZnO Nanorods for Biosensor Applications\",\"authors\":\"Hsin-Yu Chou;Yu-Wei Chen;Chang-Tze Ricky Yu;Jo-Mei Maureen Chen;Wei-Hsiang Chiang;Anoop Kumar Singh;Po-Kai Kung;Jung-Lung Chiang;Dong-Sing Wuu\",\"doi\":\"10.1109/JSEN.2025.3552595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we prepared various aluminum-doped zinc oxide (AZO) surface structures via chemical bath deposition (CBD) for use in biomedical sensors. Indium tin oxide (ITO) conductive films were deposited on glass substrates via electron beam evaporation, and AZO nanorods were subsequently grown on the ITO layer using CBD at a bath temperature of <inline-formula> <tex-math>$90~^{\\\\circ }$ </tex-math></inline-formula>C. The AZO/ITO sensor electrode was further optimized through furnace annealing, improving its structural and electrical properties. This nanostructure enhances the ability of biomedical sensor films to adsorb H+ and OH<inline-formula> <tex-math>${}^{-}$ </tex-math></inline-formula> ions by increasing the reactive surface area between the film and the solution under test, thereby improving pH sensitivity. In addition, we used an extended gate field effect transistor (EGFET) module to measure glucose concentrations ranging from 0 to 10 mg/ml, achieving sensitivity values of 55.4 mV/pH and 8.07 mA/mg<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula>ml<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula>. These findings have significant implications for the future development of blood glucose monitoring and microenvironmental sensing systems.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 10\",\"pages\":\"16648-16657\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938172/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10938172/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们通过化学浴沉积(CBD)制备了各种掺铝氧化锌(AZO)表面结构,用于生物医学传感器。采用电子束蒸发法在玻璃衬底上沉积氧化铟锡(ITO)导电薄膜,并在90~ {\circ}$ c的浴温下用CBD在ITO层上生长AZO纳米棒,通过炉内退火进一步优化AZO/ITO传感器电极的结构和电性能。这种纳米结构增加了生物医学传感器薄膜与被测溶液之间的反应表面积,从而提高了生物医学传感器薄膜吸附H+和OH ${}^{-}$离子的能力,从而提高了pH敏感性。此外,我们使用扩展的栅极场效应晶体管(EGFET)模块测量葡萄糖浓度范围为0至10 mg/ml,灵敏度值为55.4 mV/pH和8.07 mA/mg $\cdot $ ml ${}^{-{1}}$。这些发现对未来血糖监测和微环境传感系统的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication and Characterization of Aluminum-Doped ZnO Nanorods for Biosensor Applications
In this study, we prepared various aluminum-doped zinc oxide (AZO) surface structures via chemical bath deposition (CBD) for use in biomedical sensors. Indium tin oxide (ITO) conductive films were deposited on glass substrates via electron beam evaporation, and AZO nanorods were subsequently grown on the ITO layer using CBD at a bath temperature of $90~^{\circ }$ C. The AZO/ITO sensor electrode was further optimized through furnace annealing, improving its structural and electrical properties. This nanostructure enhances the ability of biomedical sensor films to adsorb H+ and OH ${}^{-}$ ions by increasing the reactive surface area between the film and the solution under test, thereby improving pH sensitivity. In addition, we used an extended gate field effect transistor (EGFET) module to measure glucose concentrations ranging from 0 to 10 mg/ml, achieving sensitivity values of 55.4 mV/pH and 8.07 mA/mg $\cdot $ ml ${}^{-{1}}$ . These findings have significant implications for the future development of blood glucose monitoring and microenvironmental sensing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信