一种具有ROI滤波和功耗降低的实时帧差CMOS成像仪

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xu Ren;Xinpeng Li;Yandong He;Gang Du
{"title":"一种具有ROI滤波和功耗降低的实时帧差CMOS成像仪","authors":"Xu Ren;Xinpeng Li;Yandong He;Gang Du","doi":"10.1109/JSEN.2025.3554503","DOIUrl":null,"url":null,"abstract":"This article presents a computational image sensor design based on frame differencing (FD) to reduce output data volume, thereby improving system energy efficiency in Internet of Things (IoT) applications. The proposed design features an 8T-1C pixel with a dynamic source follower (DSF), enabling in-pixel FD for motion detection (MD) without affecting image readout. The sensor integrates a multi-mode operation, offering full image output, data compression (DC), and MD modes. A novel 10-bit two-step current-mode analog-to-digital converter (ADC), featuring a 3-bit flash and a 7-bit single-slope (SS) ADC, is introduced for digitalization. The <inline-formula> <tex-math>$64\\times 64$ </tex-math></inline-formula> sensor prototype was implemented using a standard 0.18 <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m CMOS process. Test results demonstrate the effectiveness of the DSF in enhancing FD and reducing noise, leading to higher response linearity. Experimental validation of MD and DC modes shows an average of 10.9% of output data volume compared to full frame, and over high reconstructed image quality. The results demonstrate that the proposed design achieves efficient, on-chip data reduction with low power consumption and enhanced adaptability for real-time applications.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 10","pages":"18462-18471"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Real-Time Frame-Differencing CMOS Imager With ROI Filtering for Data and Power Reduction\",\"authors\":\"Xu Ren;Xinpeng Li;Yandong He;Gang Du\",\"doi\":\"10.1109/JSEN.2025.3554503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a computational image sensor design based on frame differencing (FD) to reduce output data volume, thereby improving system energy efficiency in Internet of Things (IoT) applications. The proposed design features an 8T-1C pixel with a dynamic source follower (DSF), enabling in-pixel FD for motion detection (MD) without affecting image readout. The sensor integrates a multi-mode operation, offering full image output, data compression (DC), and MD modes. A novel 10-bit two-step current-mode analog-to-digital converter (ADC), featuring a 3-bit flash and a 7-bit single-slope (SS) ADC, is introduced for digitalization. The <inline-formula> <tex-math>$64\\\\times 64$ </tex-math></inline-formula> sensor prototype was implemented using a standard 0.18 <inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m CMOS process. Test results demonstrate the effectiveness of the DSF in enhancing FD and reducing noise, leading to higher response linearity. Experimental validation of MD and DC modes shows an average of 10.9% of output data volume compared to full frame, and over high reconstructed image quality. The results demonstrate that the proposed design achieves efficient, on-chip data reduction with low power consumption and enhanced adaptability for real-time applications.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 10\",\"pages\":\"18462-18471\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964536/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10964536/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于帧差(FD)的计算图像传感器设计,以减少输出数据量,从而提高物联网(IoT)应用中的系统能效。提出的设计具有8T-1C像素和动态源跟随器(DSF),使运动检测(MD)的像素内FD不影响图像读出。该传感器集成了多模式操作,提供完整的图像输出,数据压缩(DC)和MD模式。介绍了一种新颖的10位两步电流模式模数转换器(ADC),具有3位闪存和7位单斜率(SS) ADC。$64\ × 64$传感器原型采用标准的0.18 $\mu $ m CMOS工艺实现。测试结果证明了DSF在提高FD和降低噪声方面的有效性,从而提高了响应线性度。实验验证表明,与全帧相比,MD和DC模式的输出数据量平均减少了10.9%,并且具有较高的重建图像质量。结果表明,该设计在低功耗的情况下实现了高效的片上数据缩减,增强了对实时应用的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Real-Time Frame-Differencing CMOS Imager With ROI Filtering for Data and Power Reduction
This article presents a computational image sensor design based on frame differencing (FD) to reduce output data volume, thereby improving system energy efficiency in Internet of Things (IoT) applications. The proposed design features an 8T-1C pixel with a dynamic source follower (DSF), enabling in-pixel FD for motion detection (MD) without affecting image readout. The sensor integrates a multi-mode operation, offering full image output, data compression (DC), and MD modes. A novel 10-bit two-step current-mode analog-to-digital converter (ADC), featuring a 3-bit flash and a 7-bit single-slope (SS) ADC, is introduced for digitalization. The $64\times 64$ sensor prototype was implemented using a standard 0.18 $\mu $ m CMOS process. Test results demonstrate the effectiveness of the DSF in enhancing FD and reducing noise, leading to higher response linearity. Experimental validation of MD and DC modes shows an average of 10.9% of output data volume compared to full frame, and over high reconstructed image quality. The results demonstrate that the proposed design achieves efficient, on-chip data reduction with low power consumption and enhanced adaptability for real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信