{"title":"6G利益相关者信任提升的可解释强化与因果学习","authors":"Miguel Arana-Catania;Amir Sonee;Abdul-Manan Khan;Kavan Fatehi;Yun Tang;Bailu Jin;Anna Soligo;David Boyle;Radu Calinescu;Poonam Yadav;Hamed Ahmadi;Antonios Tsourdos;Weisi Guo;Alessandra Russo","doi":"10.1109/OJCOMS.2025.3563415","DOIUrl":null,"url":null,"abstract":"Future telecommunications will increasingly integrate AI capabilities into network infrastructures to deliver seamless and harmonized services closer to end-users. However, this progress also raises significant trust and safety concerns. The machine learning systems orchestrating these advanced services will widely rely on deep reinforcement learning (DRL) to process multi-modal requirements datasets and make semantically modulated decisions, introducing three major challenges: (1) First, we acknowledge that most explainable AI research is stakeholder-agnostic while, in reality, the explanations must cater for diverse telecommunications stakeholders, including network service providers, legal authorities, and end users, each with unique goals and operational practices; (2) Second, DRL lacks prior models or established frameworks to guide the creation of meaningful long-term explanations of the agent’s behaviour in a goal-oriented RL task, and we introduce state-of-the-art approaches such as reward machine and sub-goal automata that can be universally represented and easily manipulated by logic programs and verifiably learned by inductive logic programming of answer set programs; (3) Third, most explainability approaches focus on correlation rather than causation, and we emphasise that understanding causal learning can further enhance 6G network optimisation. Together, in our judgement they form crucial enabling technologies for trustworthy services in 6G. This review offers a timely resource for academic researchers and industry practitioners by highlighting the methodological advancements needed for explainable DRL (X-DRL) in 6G. It identifies key stakeholder groups, maps their needs to X-DRL solutions, and presents case studies showcasing practical applications. By identifying and analysing these challenges in the context of 6G case studies, this work aims to inform future research, transform industry practices, and highlight unresolved gaps in this rapidly evolving field.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"4101-4125"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973290","citationCount":"0","resultStr":"{\"title\":\"Explainable Reinforcement and Causal Learning for Improving Trust to 6G Stakeholders\",\"authors\":\"Miguel Arana-Catania;Amir Sonee;Abdul-Manan Khan;Kavan Fatehi;Yun Tang;Bailu Jin;Anna Soligo;David Boyle;Radu Calinescu;Poonam Yadav;Hamed Ahmadi;Antonios Tsourdos;Weisi Guo;Alessandra Russo\",\"doi\":\"10.1109/OJCOMS.2025.3563415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future telecommunications will increasingly integrate AI capabilities into network infrastructures to deliver seamless and harmonized services closer to end-users. However, this progress also raises significant trust and safety concerns. The machine learning systems orchestrating these advanced services will widely rely on deep reinforcement learning (DRL) to process multi-modal requirements datasets and make semantically modulated decisions, introducing three major challenges: (1) First, we acknowledge that most explainable AI research is stakeholder-agnostic while, in reality, the explanations must cater for diverse telecommunications stakeholders, including network service providers, legal authorities, and end users, each with unique goals and operational practices; (2) Second, DRL lacks prior models or established frameworks to guide the creation of meaningful long-term explanations of the agent’s behaviour in a goal-oriented RL task, and we introduce state-of-the-art approaches such as reward machine and sub-goal automata that can be universally represented and easily manipulated by logic programs and verifiably learned by inductive logic programming of answer set programs; (3) Third, most explainability approaches focus on correlation rather than causation, and we emphasise that understanding causal learning can further enhance 6G network optimisation. Together, in our judgement they form crucial enabling technologies for trustworthy services in 6G. This review offers a timely resource for academic researchers and industry practitioners by highlighting the methodological advancements needed for explainable DRL (X-DRL) in 6G. It identifies key stakeholder groups, maps their needs to X-DRL solutions, and presents case studies showcasing practical applications. By identifying and analysing these challenges in the context of 6G case studies, this work aims to inform future research, transform industry practices, and highlight unresolved gaps in this rapidly evolving field.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"4101-4125\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973290\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10973290/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10973290/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Explainable Reinforcement and Causal Learning for Improving Trust to 6G Stakeholders
Future telecommunications will increasingly integrate AI capabilities into network infrastructures to deliver seamless and harmonized services closer to end-users. However, this progress also raises significant trust and safety concerns. The machine learning systems orchestrating these advanced services will widely rely on deep reinforcement learning (DRL) to process multi-modal requirements datasets and make semantically modulated decisions, introducing three major challenges: (1) First, we acknowledge that most explainable AI research is stakeholder-agnostic while, in reality, the explanations must cater for diverse telecommunications stakeholders, including network service providers, legal authorities, and end users, each with unique goals and operational practices; (2) Second, DRL lacks prior models or established frameworks to guide the creation of meaningful long-term explanations of the agent’s behaviour in a goal-oriented RL task, and we introduce state-of-the-art approaches such as reward machine and sub-goal automata that can be universally represented and easily manipulated by logic programs and verifiably learned by inductive logic programming of answer set programs; (3) Third, most explainability approaches focus on correlation rather than causation, and we emphasise that understanding causal learning can further enhance 6G network optimisation. Together, in our judgement they form crucial enabling technologies for trustworthy services in 6G. This review offers a timely resource for academic researchers and industry practitioners by highlighting the methodological advancements needed for explainable DRL (X-DRL) in 6G. It identifies key stakeholder groups, maps their needs to X-DRL solutions, and presents case studies showcasing practical applications. By identifying and analysing these challenges in the context of 6G case studies, this work aims to inform future research, transform industry practices, and highlight unresolved gaps in this rapidly evolving field.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.