超越R -重心:Stiefel和Grassmann流形的一种有效的平均方法

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Florent Bouchard;Nils Laurent;Salem Said;Nicolas Le Bihan
{"title":"超越R -重心:Stiefel和Grassmann流形的一种有效的平均方法","authors":"Florent Bouchard;Nils Laurent;Salem Said;Nicolas Le Bihan","doi":"10.1109/LSP.2025.3562735","DOIUrl":null,"url":null,"abstract":"In this paper, the issue of averaging data on a manifold is addressed. While the Fréchet mean resulting from Riemannian geometry appears ideal, it is unfortunately not always available and often computationally very expensive. To overcome this, <inline-formula><tex-math>$R$</tex-math></inline-formula>-barycenters have been proposed and successfully applied to Stiefel and Grassmann manifolds. However, <inline-formula><tex-math>$R$</tex-math></inline-formula>-barycenters still suffer severe limitations as they rely on iterative algorithms and complicated operators. We propose simpler, yet efficient, barycenters that we call <inline-formula><tex-math>$RL$</tex-math></inline-formula>-barycenters. We show that, in the setting relevant to most applications, our framework yields astonishingly simple barycenters: arithmetic means projected onto the manifold. We apply this approach to the Stiefel and Grassmann manifolds. On simulated data, our approach is competitive with respect to existing averaging methods, while computationally cheaper.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1950-1954"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond $R$-Barycenters: An Effective Averaging Method on Stiefel and Grassmann Manifolds\",\"authors\":\"Florent Bouchard;Nils Laurent;Salem Said;Nicolas Le Bihan\",\"doi\":\"10.1109/LSP.2025.3562735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the issue of averaging data on a manifold is addressed. While the Fréchet mean resulting from Riemannian geometry appears ideal, it is unfortunately not always available and often computationally very expensive. To overcome this, <inline-formula><tex-math>$R$</tex-math></inline-formula>-barycenters have been proposed and successfully applied to Stiefel and Grassmann manifolds. However, <inline-formula><tex-math>$R$</tex-math></inline-formula>-barycenters still suffer severe limitations as they rely on iterative algorithms and complicated operators. We propose simpler, yet efficient, barycenters that we call <inline-formula><tex-math>$RL$</tex-math></inline-formula>-barycenters. We show that, in the setting relevant to most applications, our framework yields astonishingly simple barycenters: arithmetic means projected onto the manifold. We apply this approach to the Stiefel and Grassmann manifolds. On simulated data, our approach is competitive with respect to existing averaging methods, while computationally cheaper.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1950-1954\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971193/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10971193/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了流形上数据的平均问题。虽然由黎曼几何得到的fr平均值看起来很理想,但不幸的是,它并不总是可用的,而且通常计算成本非常高。为了克服这个问题,R重心被提出并成功地应用于Stiefel和Grassmann流形。然而,$R$-barycenters仍然存在严重的局限性,因为它们依赖于迭代算法和复杂的算子。我们提出了更简单,但更有效的重心中心,我们称之为RL重心中心。我们表明,在与大多数应用程序相关的设置中,我们的框架产生了惊人的简单重心:算术平均值投影到流形上。我们将这种方法应用于Stiefel和Grassmann流形。在模拟数据上,我们的方法相对于现有的平均方法具有竞争力,同时计算成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond $R$-Barycenters: An Effective Averaging Method on Stiefel and Grassmann Manifolds
In this paper, the issue of averaging data on a manifold is addressed. While the Fréchet mean resulting from Riemannian geometry appears ideal, it is unfortunately not always available and often computationally very expensive. To overcome this, $R$-barycenters have been proposed and successfully applied to Stiefel and Grassmann manifolds. However, $R$-barycenters still suffer severe limitations as they rely on iterative algorithms and complicated operators. We propose simpler, yet efficient, barycenters that we call $RL$-barycenters. We show that, in the setting relevant to most applications, our framework yields astonishingly simple barycenters: arithmetic means projected onto the manifold. We apply this approach to the Stiefel and Grassmann manifolds. On simulated data, our approach is competitive with respect to existing averaging methods, while computationally cheaper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信