Mohamed Ali Eweda , Sanaullah Jalil , Ahmed K. Rashwan , Yohannes Tsago , Umair Hassan , Xiaoli Jin
{"title":"水稻根系在干旱胁迫下的分子和生理特征综述","authors":"Mohamed Ali Eweda , Sanaullah Jalil , Ahmed K. Rashwan , Yohannes Tsago , Umair Hassan , Xiaoli Jin","doi":"10.1016/j.plaphy.2025.110012","DOIUrl":null,"url":null,"abstract":"<div><div>Drought stress poses a major challenge to rice (<em>Oryza sativa</em> L.) production, significantly threatening global food security, especially in the context of climate change. Root architecture plays a key role in drought resistance, as rice plants require substantial water throughout their growth. The genetic diversity of rice root systems exhibits various growth patterns and adaptive traits that enable plants to endure water-deficient conditions. Harnessing this diversity to improve drought resilience demands a thorough understanding of critical root traits and adaptive mechanisms. This review explores rice roots' anatomical, physiological, and biochemical responses to drought, emphasizing important traits such as root architecture, xylem vessel modifications, root cortical aerenchyma (RCA), and water transport mechanisms. The role of biochemical regulators, including phytohormones, sugars, lipids, and reactive oxygen species (ROS), in root adaptation to drought is also explored. Additionally, the genetic and molecular pathways influencing root development under drought stress are discussed, with a focus on key genes and transcription factors (TFs) such as NAC, bZIP, AP2/ERF, and others that contribute to enhanced drought tolerance. Understanding these complex interactions is crucial for breeding drought-tolerant rice varieties, ultimately improving crop productivity under challenging environmental conditions.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"225 ","pages":"Article 110012"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular and physiological characterizations of roots under drought stress in rice: A comprehensive review\",\"authors\":\"Mohamed Ali Eweda , Sanaullah Jalil , Ahmed K. Rashwan , Yohannes Tsago , Umair Hassan , Xiaoli Jin\",\"doi\":\"10.1016/j.plaphy.2025.110012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drought stress poses a major challenge to rice (<em>Oryza sativa</em> L.) production, significantly threatening global food security, especially in the context of climate change. Root architecture plays a key role in drought resistance, as rice plants require substantial water throughout their growth. The genetic diversity of rice root systems exhibits various growth patterns and adaptive traits that enable plants to endure water-deficient conditions. Harnessing this diversity to improve drought resilience demands a thorough understanding of critical root traits and adaptive mechanisms. This review explores rice roots' anatomical, physiological, and biochemical responses to drought, emphasizing important traits such as root architecture, xylem vessel modifications, root cortical aerenchyma (RCA), and water transport mechanisms. The role of biochemical regulators, including phytohormones, sugars, lipids, and reactive oxygen species (ROS), in root adaptation to drought is also explored. Additionally, the genetic and molecular pathways influencing root development under drought stress are discussed, with a focus on key genes and transcription factors (TFs) such as NAC, bZIP, AP2/ERF, and others that contribute to enhanced drought tolerance. Understanding these complex interactions is crucial for breeding drought-tolerant rice varieties, ultimately improving crop productivity under challenging environmental conditions.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"225 \",\"pages\":\"Article 110012\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942825005406\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825005406","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Molecular and physiological characterizations of roots under drought stress in rice: A comprehensive review
Drought stress poses a major challenge to rice (Oryza sativa L.) production, significantly threatening global food security, especially in the context of climate change. Root architecture plays a key role in drought resistance, as rice plants require substantial water throughout their growth. The genetic diversity of rice root systems exhibits various growth patterns and adaptive traits that enable plants to endure water-deficient conditions. Harnessing this diversity to improve drought resilience demands a thorough understanding of critical root traits and adaptive mechanisms. This review explores rice roots' anatomical, physiological, and biochemical responses to drought, emphasizing important traits such as root architecture, xylem vessel modifications, root cortical aerenchyma (RCA), and water transport mechanisms. The role of biochemical regulators, including phytohormones, sugars, lipids, and reactive oxygen species (ROS), in root adaptation to drought is also explored. Additionally, the genetic and molecular pathways influencing root development under drought stress are discussed, with a focus on key genes and transcription factors (TFs) such as NAC, bZIP, AP2/ERF, and others that contribute to enhanced drought tolerance. Understanding these complex interactions is crucial for breeding drought-tolerant rice varieties, ultimately improving crop productivity under challenging environmental conditions.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.