Shanshan Hao, Tao Wang, Anyou Zhou, Songsheng Zheng, Zhaolin Wang
{"title":"原位掺zr纳米结构FeCo2O4尖晶石无负载催化剂用于氨分解制氢","authors":"Shanshan Hao, Tao Wang, Anyou Zhou, Songsheng Zheng, Zhaolin Wang","doi":"10.1016/j.jssc.2025.125434","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia decomposition represents a sustainable pathway for on-demand hydrogen production, yet conventional Fe–Co-based catalysts suffer from thermal sintering and insufficient activity at moderate temperatures. Herein, we report a novel strategy for engineering Zr-doped FeCo<sub>2</sub>O<sub>4</sub> spinel catalysts with low crystallinity via a scalable sol-gel method. The optimized FeCo<sub>2</sub>O<sub>4</sub>–Zr<sub>0.02</sub>-550 catalyst achieved nearly 100 % NH<sub>3</sub> conversion at 525 °C under GHSV of 3,000 mL·g-1 cat·h<sup>−1</sup>. Comprehensive characterization revealed that Zr doping induced multiple synergistic effects: (1) Formation of stable Zr–O–Fe/Co interfacial structures suppressed active site aggregation, maintaining 95 % activity after 80 h of continuous operation; (2) Oxygen vacancy generation and cation valence modulation accelerated N<sub>2</sub> desorption and electron transfer kinetics; (3) Enhanced surface acidity and reducibility improved NH<sub>3</sub> adsorption and H<sub>2</sub> desorption efficiency. This catalyst demonstrates a cost-effective production process and industrial scalability.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"349 ","pages":"Article 125434"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ Zr-doped nanostructured FeCo2O4 spinel unsupported catalyst for hydrogen production from ammonia decomposition\",\"authors\":\"Shanshan Hao, Tao Wang, Anyou Zhou, Songsheng Zheng, Zhaolin Wang\",\"doi\":\"10.1016/j.jssc.2025.125434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonia decomposition represents a sustainable pathway for on-demand hydrogen production, yet conventional Fe–Co-based catalysts suffer from thermal sintering and insufficient activity at moderate temperatures. Herein, we report a novel strategy for engineering Zr-doped FeCo<sub>2</sub>O<sub>4</sub> spinel catalysts with low crystallinity via a scalable sol-gel method. The optimized FeCo<sub>2</sub>O<sub>4</sub>–Zr<sub>0.02</sub>-550 catalyst achieved nearly 100 % NH<sub>3</sub> conversion at 525 °C under GHSV of 3,000 mL·g-1 cat·h<sup>−1</sup>. Comprehensive characterization revealed that Zr doping induced multiple synergistic effects: (1) Formation of stable Zr–O–Fe/Co interfacial structures suppressed active site aggregation, maintaining 95 % activity after 80 h of continuous operation; (2) Oxygen vacancy generation and cation valence modulation accelerated N<sub>2</sub> desorption and electron transfer kinetics; (3) Enhanced surface acidity and reducibility improved NH<sub>3</sub> adsorption and H<sub>2</sub> desorption efficiency. This catalyst demonstrates a cost-effective production process and industrial scalability.</div></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"349 \",\"pages\":\"Article 125434\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459625002579\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625002579","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
氨分解代表了按需制氢的可持续途径,但传统的fe - co基催化剂存在热烧结和在中等温度下活性不足的问题。在此,我们报告了一种新的策略,通过可扩展的溶胶-凝胶方法来设计低结晶度的掺锆FeCo2O4尖晶石催化剂。优化后的FeCo2O4-Zr0.02-550催化剂在525℃下,在3000 mL·g-1 cat·h−1的GHSV下,NH3转化率接近100%。综合表征表明,Zr掺杂诱导了多种协同效应:(1)形成稳定的Zr - o - fe /Co界面结构,抑制活性位点聚集,连续运行80 h后活性保持95%;(2)氧空位生成和阳离子价调制加速了N2脱附和电子转移动力学;(3)表面酸度和还原性的增强提高了NH3吸附和H2脱附效率。该催化剂具有成本效益高的生产工艺和工业可扩展性。
In-situ Zr-doped nanostructured FeCo2O4 spinel unsupported catalyst for hydrogen production from ammonia decomposition
Ammonia decomposition represents a sustainable pathway for on-demand hydrogen production, yet conventional Fe–Co-based catalysts suffer from thermal sintering and insufficient activity at moderate temperatures. Herein, we report a novel strategy for engineering Zr-doped FeCo2O4 spinel catalysts with low crystallinity via a scalable sol-gel method. The optimized FeCo2O4–Zr0.02-550 catalyst achieved nearly 100 % NH3 conversion at 525 °C under GHSV of 3,000 mL·g-1 cat·h−1. Comprehensive characterization revealed that Zr doping induced multiple synergistic effects: (1) Formation of stable Zr–O–Fe/Co interfacial structures suppressed active site aggregation, maintaining 95 % activity after 80 h of continuous operation; (2) Oxygen vacancy generation and cation valence modulation accelerated N2 desorption and electron transfer kinetics; (3) Enhanced surface acidity and reducibility improved NH3 adsorption and H2 desorption efficiency. This catalyst demonstrates a cost-effective production process and industrial scalability.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.