基于Stackelberg博弈与合作博弈的综合能源系统变负荷碳价与需求响应策略研究

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Xiaoou Liu
{"title":"基于Stackelberg博弈与合作博弈的综合能源系统变负荷碳价与需求响应策略研究","authors":"Xiaoou Liu","doi":"10.1016/j.energy.2025.136579","DOIUrl":null,"url":null,"abstract":"<div><div>At present, ignoring the carbon emission responsibility of load side has led to a poor effect of optimization operation for low-carbon integrated energy system (IES). In response to the above issues, this paper conducted strategy research on variable load carbon price and demand response of low-carbon IES based on Stackelberg game and cooperative game. Firstly, an accurate description was given of the interest interactions between integrated energy system operator (IESO) and load aggregator (LA) involved in energy market and carbon emission trading market, as well as among users within LA during the power exchange process. The realization path of low-carbon economic dispatch for IES from both the source and load sides was explored. Then, a model of Stackelberg game between IESO and LA was established, aiming at realizing a low-carbon optimization operation. The upper-level IESO formulates a variable load carbon price based on the carbon emission flow (CEF) model. The lower-level LA makes demand response according to energy price and load carbon price. Based on Nash bargaining theory, a model of cooperative game is built to minimize the total cost of LA and realize rational distribution of cooperation benefits among users. The concept of shared energy storage is introduced to further reduce the total cost of LA. In response to the above-mentioned problem of Stackelberg game and cooperative game, the rime optimization algorithm (RIME) is utilized to achieve high-precision and fast solution of the Stackelberg game model, and the adaptive alternating direction method of multipliers (ADMM) is adopted to solve the distributed optimization problem of cooperative game among users within LA. Finally, relying on the clean and low-carbon demonstration zone of Sino-Singapore Tianjin Eco-City in China, it has been proven that the strategy proposed in this paper can achieve energy saving and emission reduction of IES from both source and load sides, and can improve the game solution between IESO and LA, as well as among users within LA.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"328 ","pages":"Article 136579"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategy research on variable load carbon price and demand response of integrated energy system based on Stackelberg game and cooperative game\",\"authors\":\"Xiaoou Liu\",\"doi\":\"10.1016/j.energy.2025.136579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>At present, ignoring the carbon emission responsibility of load side has led to a poor effect of optimization operation for low-carbon integrated energy system (IES). In response to the above issues, this paper conducted strategy research on variable load carbon price and demand response of low-carbon IES based on Stackelberg game and cooperative game. Firstly, an accurate description was given of the interest interactions between integrated energy system operator (IESO) and load aggregator (LA) involved in energy market and carbon emission trading market, as well as among users within LA during the power exchange process. The realization path of low-carbon economic dispatch for IES from both the source and load sides was explored. Then, a model of Stackelberg game between IESO and LA was established, aiming at realizing a low-carbon optimization operation. The upper-level IESO formulates a variable load carbon price based on the carbon emission flow (CEF) model. The lower-level LA makes demand response according to energy price and load carbon price. Based on Nash bargaining theory, a model of cooperative game is built to minimize the total cost of LA and realize rational distribution of cooperation benefits among users. The concept of shared energy storage is introduced to further reduce the total cost of LA. In response to the above-mentioned problem of Stackelberg game and cooperative game, the rime optimization algorithm (RIME) is utilized to achieve high-precision and fast solution of the Stackelberg game model, and the adaptive alternating direction method of multipliers (ADMM) is adopted to solve the distributed optimization problem of cooperative game among users within LA. Finally, relying on the clean and low-carbon demonstration zone of Sino-Singapore Tianjin Eco-City in China, it has been proven that the strategy proposed in this paper can achieve energy saving and emission reduction of IES from both source and load sides, and can improve the game solution between IESO and LA, as well as among users within LA.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"328 \",\"pages\":\"Article 136579\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225022212\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225022212","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

目前,忽视负荷侧碳排放责任导致低碳综合能源系统优化运行效果不佳。针对上述问题,本文基于Stackelberg博弈和合作博弈对低碳IES的变负荷碳价和需求响应进行了策略研究。首先,准确描述了能源市场和碳排放交易市场中综合能源系统运营商(IESO)与负荷集合器(LA)之间以及负荷集合器用户之间在电力交换过程中的利益交互;从源侧和负荷侧探索了IES低碳经济调度的实现路径。然后,建立了IESO与LA之间的Stackelberg博弈模型,以实现低碳优化运行。上层IESO基于碳排放流(CEF)模型制定了变负荷碳价。下级电网根据能源价格和负荷碳价进行需求响应。基于纳什议价理论,构建合作博弈模型,使合作总成本最小化,实现合作效益在用户间的合理分配。为了进一步降低LA的总成本,引入了共享储能的概念。针对上述Stackelberg博弈和合作博弈问题,利用时间优化算法(rime)实现Stackelberg博弈模型的高精度、快速求解,采用自适应乘法器交替方向法(ADMM)解决LA内用户间合作博弈的分布式优化问题。最后,以中国中新天津生态城清洁低碳示范区为依托,证明本文提出的策略可以从源侧和负荷侧实现IES的节能减排,并且可以改善IESO与LA之间以及LA内部用户之间的博弈解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategy research on variable load carbon price and demand response of integrated energy system based on Stackelberg game and cooperative game
At present, ignoring the carbon emission responsibility of load side has led to a poor effect of optimization operation for low-carbon integrated energy system (IES). In response to the above issues, this paper conducted strategy research on variable load carbon price and demand response of low-carbon IES based on Stackelberg game and cooperative game. Firstly, an accurate description was given of the interest interactions between integrated energy system operator (IESO) and load aggregator (LA) involved in energy market and carbon emission trading market, as well as among users within LA during the power exchange process. The realization path of low-carbon economic dispatch for IES from both the source and load sides was explored. Then, a model of Stackelberg game between IESO and LA was established, aiming at realizing a low-carbon optimization operation. The upper-level IESO formulates a variable load carbon price based on the carbon emission flow (CEF) model. The lower-level LA makes demand response according to energy price and load carbon price. Based on Nash bargaining theory, a model of cooperative game is built to minimize the total cost of LA and realize rational distribution of cooperation benefits among users. The concept of shared energy storage is introduced to further reduce the total cost of LA. In response to the above-mentioned problem of Stackelberg game and cooperative game, the rime optimization algorithm (RIME) is utilized to achieve high-precision and fast solution of the Stackelberg game model, and the adaptive alternating direction method of multipliers (ADMM) is adopted to solve the distributed optimization problem of cooperative game among users within LA. Finally, relying on the clean and low-carbon demonstration zone of Sino-Singapore Tianjin Eco-City in China, it has been proven that the strategy proposed in this paper can achieve energy saving and emission reduction of IES from both source and load sides, and can improve the game solution between IESO and LA, as well as among users within LA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信