Job Ekolu , Bastien Dieppois , Serigne Bassirou Diop , Ansoumana Bodian , Stefania Grimaldi , Peter Salamon , Gabriele Villarini , Jonathan M. Eden , Paul-Arthur Monerie , Marco van de Wiel , Yves Tramblay
{"title":"21世纪,气候变化如何影响西非水文干旱和洪水的规模、持续时间和频率?故事情节方法","authors":"Job Ekolu , Bastien Dieppois , Serigne Bassirou Diop , Ansoumana Bodian , Stefania Grimaldi , Peter Salamon , Gabriele Villarini , Jonathan M. Eden , Paul-Arthur Monerie , Marco van de Wiel , Yves Tramblay","doi":"10.1016/j.jhydrol.2025.133482","DOIUrl":null,"url":null,"abstract":"<div><div>In recent decades, West Africa has been increasingly exposed to hydrological droughts and floods. However, the extent to which these changes are related to climate change and are likely to persist during the 21st century remains poorly understood. To address this gap, this study integrates plausible regional climate change storylines, derived from the 6th phase of the Coupled Model Intercomparison Projects (CMIP6), into physically based hydrological modelling experiments utilising the latest high-resolution setup of Open Source LISFLOOD (OS-LISFLOOD). Despite some limitations over the Sahelian region, OS-LISFLOOD shows good performances in representing the hydrological cycle and specific characteristics of hydrological droughts and floods. While CMIP6 models consistently project warming temperatures over West Africa, greater zonal contrasts and model discrepancies are found in projected rainfall changes. Overall, CMIP6 models tend to project more (less) rainfall, as well as more (less) intense rainfall, over the eastern (western) region of West Africa. However, wetter (drier) conditions are projected over larger regions in CMIP6 models simulating weaker (stronger) warming in the North Atlantic and Mediterranean temperatures. Future changes in hydrological droughts and floods mirror changes in precipitation. In the 21st century, we find robust significant increases (decreases) in the magnitude (duration) of floods. Meanwhile, reduced (increased) intensity of shorter (longer) duration hydrological droughts are found in the eastern (western and coastal) regions of West Africa. Our study stresses the importance of considering future changes in hydrological droughts and floods for effective water resource management and risk reduction across this highly vulnerable region.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"660 ","pages":"Article 133482"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How could climate change affect the magnitude, duration and frequency of hydrological droughts and floods in West Africa during the 21st century? A storyline approach\",\"authors\":\"Job Ekolu , Bastien Dieppois , Serigne Bassirou Diop , Ansoumana Bodian , Stefania Grimaldi , Peter Salamon , Gabriele Villarini , Jonathan M. Eden , Paul-Arthur Monerie , Marco van de Wiel , Yves Tramblay\",\"doi\":\"10.1016/j.jhydrol.2025.133482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent decades, West Africa has been increasingly exposed to hydrological droughts and floods. However, the extent to which these changes are related to climate change and are likely to persist during the 21st century remains poorly understood. To address this gap, this study integrates plausible regional climate change storylines, derived from the 6th phase of the Coupled Model Intercomparison Projects (CMIP6), into physically based hydrological modelling experiments utilising the latest high-resolution setup of Open Source LISFLOOD (OS-LISFLOOD). Despite some limitations over the Sahelian region, OS-LISFLOOD shows good performances in representing the hydrological cycle and specific characteristics of hydrological droughts and floods. While CMIP6 models consistently project warming temperatures over West Africa, greater zonal contrasts and model discrepancies are found in projected rainfall changes. Overall, CMIP6 models tend to project more (less) rainfall, as well as more (less) intense rainfall, over the eastern (western) region of West Africa. However, wetter (drier) conditions are projected over larger regions in CMIP6 models simulating weaker (stronger) warming in the North Atlantic and Mediterranean temperatures. Future changes in hydrological droughts and floods mirror changes in precipitation. In the 21st century, we find robust significant increases (decreases) in the magnitude (duration) of floods. Meanwhile, reduced (increased) intensity of shorter (longer) duration hydrological droughts are found in the eastern (western and coastal) regions of West Africa. Our study stresses the importance of considering future changes in hydrological droughts and floods for effective water resource management and risk reduction across this highly vulnerable region.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"660 \",\"pages\":\"Article 133482\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169425008200\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425008200","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
How could climate change affect the magnitude, duration and frequency of hydrological droughts and floods in West Africa during the 21st century? A storyline approach
In recent decades, West Africa has been increasingly exposed to hydrological droughts and floods. However, the extent to which these changes are related to climate change and are likely to persist during the 21st century remains poorly understood. To address this gap, this study integrates plausible regional climate change storylines, derived from the 6th phase of the Coupled Model Intercomparison Projects (CMIP6), into physically based hydrological modelling experiments utilising the latest high-resolution setup of Open Source LISFLOOD (OS-LISFLOOD). Despite some limitations over the Sahelian region, OS-LISFLOOD shows good performances in representing the hydrological cycle and specific characteristics of hydrological droughts and floods. While CMIP6 models consistently project warming temperatures over West Africa, greater zonal contrasts and model discrepancies are found in projected rainfall changes. Overall, CMIP6 models tend to project more (less) rainfall, as well as more (less) intense rainfall, over the eastern (western) region of West Africa. However, wetter (drier) conditions are projected over larger regions in CMIP6 models simulating weaker (stronger) warming in the North Atlantic and Mediterranean temperatures. Future changes in hydrological droughts and floods mirror changes in precipitation. In the 21st century, we find robust significant increases (decreases) in the magnitude (duration) of floods. Meanwhile, reduced (increased) intensity of shorter (longer) duration hydrological droughts are found in the eastern (western and coastal) regions of West Africa. Our study stresses the importance of considering future changes in hydrological droughts and floods for effective water resource management and risk reduction across this highly vulnerable region.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.