Ranran Fu , Ruixue Wang , Chaohai Wang , Shiyu Zhang , Junning Wang , Rongfu Peng , Xinfeng Zhu , Haiyan Kang , Yanli Mao
{"title":"基于mofs的水处理气凝胶及其衍生物的研究进展","authors":"Ranran Fu , Ruixue Wang , Chaohai Wang , Shiyu Zhang , Junning Wang , Rongfu Peng , Xinfeng Zhu , Haiyan Kang , Yanli Mao","doi":"10.1016/j.envres.2025.121824","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are a class of environmental nano-materials composed of metal ions and organic ligands with remarkable physical and chemical properties, such as huge specific surface area as well as abundant pore volume. Based on their unique structures and properties, MOFs have demonstrated potential applications in the fields of adsorption, gas storage, separation membranes, and catalysis, and have become popular candidates in water treatment technologies. However, MOFs particles in powder form are prone to agglomeration and adhesion effects in water, which leads to problems such as difficult separation and secondary pollution. As an ideal carrier for MOFs, aerogels exhibit a unique three-dimensional interconnected pore structure, which endows aerogels with high porosity properties and excellent adsorption capacity. Researchers have skillfully combined MOFs with aerogels to create a new type of MOF aerogel composites (MOFACs). These composites are converted into highly porous and high-strength carbon aerogels through a high-temperature pyrolysis process in an inert environment. These carbon aerogels not only retain the high catalytic efficiency of MOFs, but also inherit the advantages of aerogels in terms of light weight, low density and easy handling. This paper reviews various types of MOFACs, each of which possesses different chemical compositions and physical properties, thus adapting to different applications. The paper also discusses the applications of MOFACs and carbon aerogels in water treatment for catalysis, selective adsorption and solid phase microextraction.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"279 ","pages":"Article 121824"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOFs-based aerogels and their derivatives for water treatment: A review\",\"authors\":\"Ranran Fu , Ruixue Wang , Chaohai Wang , Shiyu Zhang , Junning Wang , Rongfu Peng , Xinfeng Zhu , Haiyan Kang , Yanli Mao\",\"doi\":\"10.1016/j.envres.2025.121824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-organic frameworks (MOFs) are a class of environmental nano-materials composed of metal ions and organic ligands with remarkable physical and chemical properties, such as huge specific surface area as well as abundant pore volume. Based on their unique structures and properties, MOFs have demonstrated potential applications in the fields of adsorption, gas storage, separation membranes, and catalysis, and have become popular candidates in water treatment technologies. However, MOFs particles in powder form are prone to agglomeration and adhesion effects in water, which leads to problems such as difficult separation and secondary pollution. As an ideal carrier for MOFs, aerogels exhibit a unique three-dimensional interconnected pore structure, which endows aerogels with high porosity properties and excellent adsorption capacity. Researchers have skillfully combined MOFs with aerogels to create a new type of MOF aerogel composites (MOFACs). These composites are converted into highly porous and high-strength carbon aerogels through a high-temperature pyrolysis process in an inert environment. These carbon aerogels not only retain the high catalytic efficiency of MOFs, but also inherit the advantages of aerogels in terms of light weight, low density and easy handling. This paper reviews various types of MOFACs, each of which possesses different chemical compositions and physical properties, thus adapting to different applications. The paper also discusses the applications of MOFACs and carbon aerogels in water treatment for catalysis, selective adsorption and solid phase microextraction.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"279 \",\"pages\":\"Article 121824\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935125010758\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125010758","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
MOFs-based aerogels and their derivatives for water treatment: A review
Metal-organic frameworks (MOFs) are a class of environmental nano-materials composed of metal ions and organic ligands with remarkable physical and chemical properties, such as huge specific surface area as well as abundant pore volume. Based on their unique structures and properties, MOFs have demonstrated potential applications in the fields of adsorption, gas storage, separation membranes, and catalysis, and have become popular candidates in water treatment technologies. However, MOFs particles in powder form are prone to agglomeration and adhesion effects in water, which leads to problems such as difficult separation and secondary pollution. As an ideal carrier for MOFs, aerogels exhibit a unique three-dimensional interconnected pore structure, which endows aerogels with high porosity properties and excellent adsorption capacity. Researchers have skillfully combined MOFs with aerogels to create a new type of MOF aerogel composites (MOFACs). These composites are converted into highly porous and high-strength carbon aerogels through a high-temperature pyrolysis process in an inert environment. These carbon aerogels not only retain the high catalytic efficiency of MOFs, but also inherit the advantages of aerogels in terms of light weight, low density and easy handling. This paper reviews various types of MOFACs, each of which possesses different chemical compositions and physical properties, thus adapting to different applications. The paper also discusses the applications of MOFACs and carbon aerogels in water treatment for catalysis, selective adsorption and solid phase microextraction.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.