{"title":"非对称界面条波导中的Dyakonov表面波导模式","authors":"D.A. Chermoshentsev , O.V. Borovkova , I.I. Stepanov , I.A. Bilenko , N.A. Gippius , S.A. Dyakov","doi":"10.1016/j.photonics.2025.101397","DOIUrl":null,"url":null,"abstract":"<div><div>We report a theoretical prediction of Dyakonov surface waveguide modes that propagate along a flat strip interfacial waveguide formed by two anisotropic materials, bounded by metal on one side and air on the other. We demonstrate that due to asymmetric metal/air boundary conditions, surface waves can exist in such a system regardless of the type of optical anisotropy. The asymmetric waveguide with negative anisotropy supports a strongly localized solution, whereas in the case of positive anisotropy, the mode intensity decays slowly with distance from the interface. We also analyze the dispersion and field structure of these waves using perturbation theory in the approximation of weak anisotropy. We demonstrate that, irrespective of the type of optical anisotropy, Dyakonov surface waveguide modes exhibit a high degree of circular polarization, reaching values of ±1 at certain distances from the boundaries. Our results are consistent with numerical simulations using the finite element method. We believe this work opens new opportunities for the experimental investigation of Dyakonov surface waves and their practical applications.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101397"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dyakonov surface waveguide modes in asymmetric interfacial strip waveguide\",\"authors\":\"D.A. Chermoshentsev , O.V. Borovkova , I.I. Stepanov , I.A. Bilenko , N.A. Gippius , S.A. Dyakov\",\"doi\":\"10.1016/j.photonics.2025.101397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report a theoretical prediction of Dyakonov surface waveguide modes that propagate along a flat strip interfacial waveguide formed by two anisotropic materials, bounded by metal on one side and air on the other. We demonstrate that due to asymmetric metal/air boundary conditions, surface waves can exist in such a system regardless of the type of optical anisotropy. The asymmetric waveguide with negative anisotropy supports a strongly localized solution, whereas in the case of positive anisotropy, the mode intensity decays slowly with distance from the interface. We also analyze the dispersion and field structure of these waves using perturbation theory in the approximation of weak anisotropy. We demonstrate that, irrespective of the type of optical anisotropy, Dyakonov surface waveguide modes exhibit a high degree of circular polarization, reaching values of ±1 at certain distances from the boundaries. Our results are consistent with numerical simulations using the finite element method. We believe this work opens new opportunities for the experimental investigation of Dyakonov surface waves and their practical applications.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"65 \",\"pages\":\"Article 101397\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441025000471\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000471","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dyakonov surface waveguide modes in asymmetric interfacial strip waveguide
We report a theoretical prediction of Dyakonov surface waveguide modes that propagate along a flat strip interfacial waveguide formed by two anisotropic materials, bounded by metal on one side and air on the other. We demonstrate that due to asymmetric metal/air boundary conditions, surface waves can exist in such a system regardless of the type of optical anisotropy. The asymmetric waveguide with negative anisotropy supports a strongly localized solution, whereas in the case of positive anisotropy, the mode intensity decays slowly with distance from the interface. We also analyze the dispersion and field structure of these waves using perturbation theory in the approximation of weak anisotropy. We demonstrate that, irrespective of the type of optical anisotropy, Dyakonov surface waveguide modes exhibit a high degree of circular polarization, reaching values of ±1 at certain distances from the boundaries. Our results are consistent with numerical simulations using the finite element method. We believe this work opens new opportunities for the experimental investigation of Dyakonov surface waves and their practical applications.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.