Hongru Li , Yuhan Wang , Shunqing Zhou , Jianli Liu , Yuemei Jin
{"title":"负载apatinib的硅酸盐纳米颗粒包被巨噬细胞膜和PD-1抗体,通过VEGFR2和PD-1双重抑制增强卵巢癌的化学免疫治疗","authors":"Hongru Li , Yuhan Wang , Shunqing Zhou , Jianli Liu , Yuemei Jin","doi":"10.1016/j.colsurfb.2025.114790","DOIUrl":null,"url":null,"abstract":"<div><div>Ovarian cancer remains one of the most challenging malignancies to treat due to its aggressive nature and resistance to conventional therapies. In this study, we developed a nanoparticle-based system (Apa@SiO<sub>2</sub>@MP) that combines chemotherapy with immune checkpoint inhibition for enhanced treatment of ovarian cancer. The system consists of mesoporous silica nanoparticles (SiO<sub>2</sub> NPs) coated with macrophage membranes (MP) and functionalized with programmed death 1 (PD-1) antibody, designed to improve the delivery and targeting of apatinib, a tyrosine kinase inhibitor. The system demonstrated effective drug encapsulation, controlled release, and stability in physiological environments. <em>In vitro</em> assays revealed that Apa@SiO<sub>2</sub>@MP had minimal cytotoxicity in normal cells but significantly reduced cell viability in ovarian cancer cells (SKOV-3), highlighting its cancer-targeting ability. Apatinib effectively inhibited VEGFR2 expression and induced reactive oxygen species (ROS) production, further promoting anti-cancer effects. <em>In vivo</em>, Apa@SiO<sub>2</sub>@MP treatment led to enhanced tumor inhibition, as well as significant immune response activation, including increased CD4<sup>+</sup> and CD8<sup>+</sup> T cells and elevated IFN-γ levels. This study provides a promising multi-modal strategy for overcoming challenges in cancer therapy by integrating chemotherapy, immunotherapy, and targeted drug delivery, offering potential for improved treatment outcomes in ovarian cancer.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"254 ","pages":"Article 114790"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apatinib-loaded silicate nanoparticles coated with macrophage membranes and PD-1 antibody for enhanced chemo-immunotherapy in ovarian cancer via VEGFR2 and PD-1 dual inhibition\",\"authors\":\"Hongru Li , Yuhan Wang , Shunqing Zhou , Jianli Liu , Yuemei Jin\",\"doi\":\"10.1016/j.colsurfb.2025.114790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ovarian cancer remains one of the most challenging malignancies to treat due to its aggressive nature and resistance to conventional therapies. In this study, we developed a nanoparticle-based system (Apa@SiO<sub>2</sub>@MP) that combines chemotherapy with immune checkpoint inhibition for enhanced treatment of ovarian cancer. The system consists of mesoporous silica nanoparticles (SiO<sub>2</sub> NPs) coated with macrophage membranes (MP) and functionalized with programmed death 1 (PD-1) antibody, designed to improve the delivery and targeting of apatinib, a tyrosine kinase inhibitor. The system demonstrated effective drug encapsulation, controlled release, and stability in physiological environments. <em>In vitro</em> assays revealed that Apa@SiO<sub>2</sub>@MP had minimal cytotoxicity in normal cells but significantly reduced cell viability in ovarian cancer cells (SKOV-3), highlighting its cancer-targeting ability. Apatinib effectively inhibited VEGFR2 expression and induced reactive oxygen species (ROS) production, further promoting anti-cancer effects. <em>In vivo</em>, Apa@SiO<sub>2</sub>@MP treatment led to enhanced tumor inhibition, as well as significant immune response activation, including increased CD4<sup>+</sup> and CD8<sup>+</sup> T cells and elevated IFN-γ levels. This study provides a promising multi-modal strategy for overcoming challenges in cancer therapy by integrating chemotherapy, immunotherapy, and targeted drug delivery, offering potential for improved treatment outcomes in ovarian cancer.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"254 \",\"pages\":\"Article 114790\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776525002978\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002978","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Apatinib-loaded silicate nanoparticles coated with macrophage membranes and PD-1 antibody for enhanced chemo-immunotherapy in ovarian cancer via VEGFR2 and PD-1 dual inhibition
Ovarian cancer remains one of the most challenging malignancies to treat due to its aggressive nature and resistance to conventional therapies. In this study, we developed a nanoparticle-based system (Apa@SiO2@MP) that combines chemotherapy with immune checkpoint inhibition for enhanced treatment of ovarian cancer. The system consists of mesoporous silica nanoparticles (SiO2 NPs) coated with macrophage membranes (MP) and functionalized with programmed death 1 (PD-1) antibody, designed to improve the delivery and targeting of apatinib, a tyrosine kinase inhibitor. The system demonstrated effective drug encapsulation, controlled release, and stability in physiological environments. In vitro assays revealed that Apa@SiO2@MP had minimal cytotoxicity in normal cells but significantly reduced cell viability in ovarian cancer cells (SKOV-3), highlighting its cancer-targeting ability. Apatinib effectively inhibited VEGFR2 expression and induced reactive oxygen species (ROS) production, further promoting anti-cancer effects. In vivo, Apa@SiO2@MP treatment led to enhanced tumor inhibition, as well as significant immune response activation, including increased CD4+ and CD8+ T cells and elevated IFN-γ levels. This study provides a promising multi-modal strategy for overcoming challenges in cancer therapy by integrating chemotherapy, immunotherapy, and targeted drug delivery, offering potential for improved treatment outcomes in ovarian cancer.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.