具有不同HTMs的新型SrHfSe3硫系钙钛矿太阳能电池:提高效率的理论建模

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Dhineshkumar Srinivasan, Aruna-Devi Rasu Chettiar, Kaviya Tracy Arockiadoss, Latha Marasamy
{"title":"具有不同HTMs的新型SrHfSe3硫系钙钛矿太阳能电池:提高效率的理论建模","authors":"Dhineshkumar Srinivasan,&nbsp;Aruna-Devi Rasu Chettiar,&nbsp;Kaviya Tracy Arockiadoss,&nbsp;Latha Marasamy","doi":"10.1016/j.solmat.2025.113727","DOIUrl":null,"url":null,"abstract":"<div><div>We have numerically designed a novel SrHfSe<sub>3</sub> chalcogenide perovskites solar cell in the structure FTO/BaSnO<sub>3</sub>/SrHfSe<sub>3</sub>/MoS<sub>2</sub>/Au using SCAPS-1D to investigate its suitability for photovoltaics for the first time. We have primarily investigated the influence of the critical parameters of each layer and the back metal work functions (BMWF). Increasing the absorber's thickness to 700 nm elevated the light absorption by 1.26 times, boosting the carrier generation in solar cells. On optimizing MoS<sub>2</sub>, the PCE increased from 15 % to 26 % due to the improved quantum efficiency by 1.11 times in the NIR region at its thickness of 140 nm and proper conduction and valence band offsets of 0.6eV and −1.36eV respectively at absorber/hole transport layer (HTL) interface. Upon optimizing the BMWF, the fermi level shifted towards the valence band of HTL, resulting in the PCE of 26.21 % for Ni. Afterward, we simulated 1627 solar cells by replacing MoS<sub>2</sub> with 40-HTLs, including inorganic semiconductors, polymers, and MXenes, and optimizing their material parameters and BMWF. Among them, under each category of HTLs, the best PCEs of 27.87 %, 27.39 %, and 26.30 % were achieved for SnS, CPE-K, and Ti<sub>2</sub>CO<sub>2</sub>, respectively. Thus, this work provides theoretical guidelines to the researchers for fabricating highly efficient SrHfSe<sub>3</sub> chalcogenide perovskites solar cells.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113727"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new class of SrHfSe3 chalcogenide perovskite solar cells with diverse HTMs: Theoretical modelling towards efficiency enhancement\",\"authors\":\"Dhineshkumar Srinivasan,&nbsp;Aruna-Devi Rasu Chettiar,&nbsp;Kaviya Tracy Arockiadoss,&nbsp;Latha Marasamy\",\"doi\":\"10.1016/j.solmat.2025.113727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have numerically designed a novel SrHfSe<sub>3</sub> chalcogenide perovskites solar cell in the structure FTO/BaSnO<sub>3</sub>/SrHfSe<sub>3</sub>/MoS<sub>2</sub>/Au using SCAPS-1D to investigate its suitability for photovoltaics for the first time. We have primarily investigated the influence of the critical parameters of each layer and the back metal work functions (BMWF). Increasing the absorber's thickness to 700 nm elevated the light absorption by 1.26 times, boosting the carrier generation in solar cells. On optimizing MoS<sub>2</sub>, the PCE increased from 15 % to 26 % due to the improved quantum efficiency by 1.11 times in the NIR region at its thickness of 140 nm and proper conduction and valence band offsets of 0.6eV and −1.36eV respectively at absorber/hole transport layer (HTL) interface. Upon optimizing the BMWF, the fermi level shifted towards the valence band of HTL, resulting in the PCE of 26.21 % for Ni. Afterward, we simulated 1627 solar cells by replacing MoS<sub>2</sub> with 40-HTLs, including inorganic semiconductors, polymers, and MXenes, and optimizing their material parameters and BMWF. Among them, under each category of HTLs, the best PCEs of 27.87 %, 27.39 %, and 26.30 % were achieved for SnS, CPE-K, and Ti<sub>2</sub>CO<sub>2</sub>, respectively. Thus, this work provides theoretical guidelines to the researchers for fabricating highly efficient SrHfSe<sub>3</sub> chalcogenide perovskites solar cells.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"290 \",\"pages\":\"Article 113727\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825003289\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003289","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文首次利用SCAPS-1D对FTO/BaSnO3/SrHfSe3/MoS2/Au结构的新型SrHfSe3硫系钙钛矿太阳能电池进行了数值设计,研究了其在光伏发电中的适用性。我们主要研究了各层的关键参数和后金属加工功能(BMWF)的影响。将吸收剂的厚度增加到700 nm,光吸收率提高了1.26倍,促进了太阳能电池中载流子的产生。优化MoS2后,由于其厚度为140 nm的近红外区量子效率提高了1.11倍,吸收层/空穴输运层(HTL)界面的导通和价带偏移分别为0.6eV和- 1.36eV, PCE从15%提高到26%。优化BMWF后,费米能级向HTL的价带移动,使Ni的PCE达到26.21%。随后,我们用40-HTLs(包括无机半导体、聚合物和MXenes)代替MoS2模拟了1627块太阳能电池,并优化了它们的材料参数和BMWF。其中,在各类HTLs中,SnS、CPE-K和Ti2CO2的pce分别达到27.87%、27.39%和26.30%。因此,这项工作为研究人员制造高效的SrHfSe3硫系钙钛矿太阳能电池提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new class of SrHfSe3 chalcogenide perovskite solar cells with diverse HTMs: Theoretical modelling towards efficiency enhancement
We have numerically designed a novel SrHfSe3 chalcogenide perovskites solar cell in the structure FTO/BaSnO3/SrHfSe3/MoS2/Au using SCAPS-1D to investigate its suitability for photovoltaics for the first time. We have primarily investigated the influence of the critical parameters of each layer and the back metal work functions (BMWF). Increasing the absorber's thickness to 700 nm elevated the light absorption by 1.26 times, boosting the carrier generation in solar cells. On optimizing MoS2, the PCE increased from 15 % to 26 % due to the improved quantum efficiency by 1.11 times in the NIR region at its thickness of 140 nm and proper conduction and valence band offsets of 0.6eV and −1.36eV respectively at absorber/hole transport layer (HTL) interface. Upon optimizing the BMWF, the fermi level shifted towards the valence band of HTL, resulting in the PCE of 26.21 % for Ni. Afterward, we simulated 1627 solar cells by replacing MoS2 with 40-HTLs, including inorganic semiconductors, polymers, and MXenes, and optimizing their material parameters and BMWF. Among them, under each category of HTLs, the best PCEs of 27.87 %, 27.39 %, and 26.30 % were achieved for SnS, CPE-K, and Ti2CO2, respectively. Thus, this work provides theoretical guidelines to the researchers for fabricating highly efficient SrHfSe3 chalcogenide perovskites solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信