Yumeng Dong , Siyu Yang , Xiaoke Jing , Xiaoqing Hu , Yun Liang , Jun Wang , Gang Liang , Sheng He , Zengyu Jiang
{"title":"Habitat成像放射组学增加了预测喉鳞癌ki -67阳性的nomogram准确性","authors":"Yumeng Dong , Siyu Yang , Xiaoke Jing , Xiaoqing Hu , Yun Liang , Jun Wang , Gang Liang , Sheng He , Zengyu Jiang","doi":"10.1016/j.ejro.2025.100659","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To investigate the value of applying habitat imaging (HI) radiomics on venous-phase computed tomography (CT) images from laryngeal squamous cell carcinoma (LSCC) patients, as part of a nomogram to predict Ki-67 positivity, an indicator of poorer LSCC prognoses.</div></div><div><h3>Methods</h3><div>Clinical and CT imaging data from 128 LSCC patients, divided into training (89) and testing (39) groups, were analyzed. Conventional and HI radiomics features were extracted from enhanced venous phase images, either from the entire tumor (conventional) or 3 sub-regions (HI). Radiomics models were established, based on 5 machine learning algorithms, while clinical characteristics were analyzed by both uni- and multi-variate logistic regression analyses for their associations with Ki-67 positivity. Afterwards, a predictive nomogram was constructed by combining clinical characteristics, conventional radiomics, and HI radiomics.</div></div><div><h3>Results</h3><div>The only clinical characteristic strongly predictive for Ki-67-positivity is the degree of differentiation (low/medium vs. high). Additionally, HI radiomics was significantly more accurate than conventional for predicting Ki-67-positivity. The most accurate model, though, was the predictive nomogram, with areas under the curve of 0.945 (training) and 0.871 (testing), which was significantly higher than for clinical characteristics, conventional radiomics and HI radiomics models alone; it also had the highest net benefit, and thus greatest clinical utility under decision curve analysis.</div></div><div><h3>Conclusions</h3><div>HI radiomics features were more accurate for predicting Ki-67-positivity in LSCC than conventional radiomics. However, the combination of those features with conventional radiomics and the degree of differentiation in a predictive nomogram yields the most accurate model for Ki-67-positivity.</div></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"14 ","pages":"Article 100659"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Habitat imaging radiomics increases the accuracy of a nomogram for predicting Ki-67-positivity in laryngeal squamous cell carcinoma\",\"authors\":\"Yumeng Dong , Siyu Yang , Xiaoke Jing , Xiaoqing Hu , Yun Liang , Jun Wang , Gang Liang , Sheng He , Zengyu Jiang\",\"doi\":\"10.1016/j.ejro.2025.100659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To investigate the value of applying habitat imaging (HI) radiomics on venous-phase computed tomography (CT) images from laryngeal squamous cell carcinoma (LSCC) patients, as part of a nomogram to predict Ki-67 positivity, an indicator of poorer LSCC prognoses.</div></div><div><h3>Methods</h3><div>Clinical and CT imaging data from 128 LSCC patients, divided into training (89) and testing (39) groups, were analyzed. Conventional and HI radiomics features were extracted from enhanced venous phase images, either from the entire tumor (conventional) or 3 sub-regions (HI). Radiomics models were established, based on 5 machine learning algorithms, while clinical characteristics were analyzed by both uni- and multi-variate logistic regression analyses for their associations with Ki-67 positivity. Afterwards, a predictive nomogram was constructed by combining clinical characteristics, conventional radiomics, and HI radiomics.</div></div><div><h3>Results</h3><div>The only clinical characteristic strongly predictive for Ki-67-positivity is the degree of differentiation (low/medium vs. high). Additionally, HI radiomics was significantly more accurate than conventional for predicting Ki-67-positivity. The most accurate model, though, was the predictive nomogram, with areas under the curve of 0.945 (training) and 0.871 (testing), which was significantly higher than for clinical characteristics, conventional radiomics and HI radiomics models alone; it also had the highest net benefit, and thus greatest clinical utility under decision curve analysis.</div></div><div><h3>Conclusions</h3><div>HI radiomics features were more accurate for predicting Ki-67-positivity in LSCC than conventional radiomics. However, the combination of those features with conventional radiomics and the degree of differentiation in a predictive nomogram yields the most accurate model for Ki-67-positivity.</div></div>\",\"PeriodicalId\":38076,\"journal\":{\"name\":\"European Journal of Radiology Open\",\"volume\":\"14 \",\"pages\":\"Article 100659\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352047725000267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047725000267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的探讨生境成像(HI)放射组学在喉鳞癌(LSCC)患者静脉期计算机断层扫描(CT)图像上的应用价值,作为预测Ki-67阳性的nomogram方法之一,Ki-67是喉鳞癌预后较差的指标。方法对128例LSCC患者的临床及CT影像资料进行分析,分为训练组(89例)和测试组(39例)。常规和HI放射组学特征从增强的静脉期图像中提取,无论是从整个肿瘤(常规)还是3个亚区域(HI)。基于5种机器学习算法建立放射组学模型,同时通过单因素和多因素logistic回归分析临床特征与Ki-67阳性的关系。然后,结合临床特征、常规放射组学和HI放射组学构建预测nomogram。结果预测ki -67阳性的唯一临床特征是分化程度(低/中/高)。此外,HI放射组学在预测ki -67阳性方面明显比传统方法更准确。最准确的模型是预测nomogram,其曲线下面积分别为0.945 (training)和0.871 (testing),显著高于单纯的临床特征、常规放射组学模型和HI放射组学模型;它也有最高的净效益,因此在决策曲线分析下最大的临床效用。结论shi放射组学特征对LSCC ki -67阳性的预测比常规放射组学更准确。然而,将这些特征与传统放射组学和预测图中的分化程度相结合,可以产生ki -67阳性的最准确模型。
Habitat imaging radiomics increases the accuracy of a nomogram for predicting Ki-67-positivity in laryngeal squamous cell carcinoma
Purpose
To investigate the value of applying habitat imaging (HI) radiomics on venous-phase computed tomography (CT) images from laryngeal squamous cell carcinoma (LSCC) patients, as part of a nomogram to predict Ki-67 positivity, an indicator of poorer LSCC prognoses.
Methods
Clinical and CT imaging data from 128 LSCC patients, divided into training (89) and testing (39) groups, were analyzed. Conventional and HI radiomics features were extracted from enhanced venous phase images, either from the entire tumor (conventional) or 3 sub-regions (HI). Radiomics models were established, based on 5 machine learning algorithms, while clinical characteristics were analyzed by both uni- and multi-variate logistic regression analyses for their associations with Ki-67 positivity. Afterwards, a predictive nomogram was constructed by combining clinical characteristics, conventional radiomics, and HI radiomics.
Results
The only clinical characteristic strongly predictive for Ki-67-positivity is the degree of differentiation (low/medium vs. high). Additionally, HI radiomics was significantly more accurate than conventional for predicting Ki-67-positivity. The most accurate model, though, was the predictive nomogram, with areas under the curve of 0.945 (training) and 0.871 (testing), which was significantly higher than for clinical characteristics, conventional radiomics and HI radiomics models alone; it also had the highest net benefit, and thus greatest clinical utility under decision curve analysis.
Conclusions
HI radiomics features were more accurate for predicting Ki-67-positivity in LSCC than conventional radiomics. However, the combination of those features with conventional radiomics and the degree of differentiation in a predictive nomogram yields the most accurate model for Ki-67-positivity.