Feng Zhou , Chenghao Wu , Jianqin Fu , Jingping Liu , Xiongbo Duan , Zhiqiang Sun
{"title":"氢内燃机异常燃烧及NOx排放控制策略","authors":"Feng Zhou , Chenghao Wu , Jianqin Fu , Jingping Liu , Xiongbo Duan , Zhiqiang Sun","doi":"10.1016/j.rser.2025.115847","DOIUrl":null,"url":null,"abstract":"<div><div>Fossil fuel use raises concerns regarding environmental pollution and limited storage capacity. Internal combustion engines significantly depend on the conventional gasoline and diesel, emphasizing the need for alternative fuels. Hydrogen is currently gaining attention as a potential clean energy alternative to traditional fossil fuels owing to its zero carbon emissions, high energy density, fast refueling, compatibility with the existing infrastructure, flexibility, and versatility. Hydrogen use in internal combustion engines signifies a paradigm shift in the engine community toward cleaner and more sustainable transportation solutions. However, challenges such as production costs, distribution infrastructure, and security requirements must be addressed for widespread use. Ongoing research aims to overcome these challenges and enhance the feasibility of using hydrogen as a carbon-free energy source for the engines. This study comprehensively overviews recent research progress and advancements in hydrogen internal combustion engine in terms of the mixture formation mechanism, combustion modes, abnormal combustion mechanism, and the formation mechanism of the nitrogen oxide emissions. In addition, advanced combustion control strategies and technologies have been proposed and summarized to regulate abnormal combustion and nitrogen oxide emissions in the hydrogen engine. The main objectives of this study are to overcome or address these challenges and problems and further enhance the feasibility of hydrogen as a carbon-free alternative fuel for the engine.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"219 ","pages":"Article 115847"},"PeriodicalIF":16.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal combustion and NOx emissions control strategies of hydrogen internal combustion engine\",\"authors\":\"Feng Zhou , Chenghao Wu , Jianqin Fu , Jingping Liu , Xiongbo Duan , Zhiqiang Sun\",\"doi\":\"10.1016/j.rser.2025.115847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fossil fuel use raises concerns regarding environmental pollution and limited storage capacity. Internal combustion engines significantly depend on the conventional gasoline and diesel, emphasizing the need for alternative fuels. Hydrogen is currently gaining attention as a potential clean energy alternative to traditional fossil fuels owing to its zero carbon emissions, high energy density, fast refueling, compatibility with the existing infrastructure, flexibility, and versatility. Hydrogen use in internal combustion engines signifies a paradigm shift in the engine community toward cleaner and more sustainable transportation solutions. However, challenges such as production costs, distribution infrastructure, and security requirements must be addressed for widespread use. Ongoing research aims to overcome these challenges and enhance the feasibility of using hydrogen as a carbon-free energy source for the engines. This study comprehensively overviews recent research progress and advancements in hydrogen internal combustion engine in terms of the mixture formation mechanism, combustion modes, abnormal combustion mechanism, and the formation mechanism of the nitrogen oxide emissions. In addition, advanced combustion control strategies and technologies have been proposed and summarized to regulate abnormal combustion and nitrogen oxide emissions in the hydrogen engine. The main objectives of this study are to overcome or address these challenges and problems and further enhance the feasibility of hydrogen as a carbon-free alternative fuel for the engine.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"219 \",\"pages\":\"Article 115847\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032125005209\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125005209","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Abnormal combustion and NOx emissions control strategies of hydrogen internal combustion engine
Fossil fuel use raises concerns regarding environmental pollution and limited storage capacity. Internal combustion engines significantly depend on the conventional gasoline and diesel, emphasizing the need for alternative fuels. Hydrogen is currently gaining attention as a potential clean energy alternative to traditional fossil fuels owing to its zero carbon emissions, high energy density, fast refueling, compatibility with the existing infrastructure, flexibility, and versatility. Hydrogen use in internal combustion engines signifies a paradigm shift in the engine community toward cleaner and more sustainable transportation solutions. However, challenges such as production costs, distribution infrastructure, and security requirements must be addressed for widespread use. Ongoing research aims to overcome these challenges and enhance the feasibility of using hydrogen as a carbon-free energy source for the engines. This study comprehensively overviews recent research progress and advancements in hydrogen internal combustion engine in terms of the mixture formation mechanism, combustion modes, abnormal combustion mechanism, and the formation mechanism of the nitrogen oxide emissions. In addition, advanced combustion control strategies and technologies have been proposed and summarized to regulate abnormal combustion and nitrogen oxide emissions in the hydrogen engine. The main objectives of this study are to overcome or address these challenges and problems and further enhance the feasibility of hydrogen as a carbon-free alternative fuel for the engine.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.