Xiaonan Niu , Jing Zhang , Shangxiao Wang , Leli Zong , Mo Zhou , Ming Zhang
{"title":"基于生态安全格局和生态风险的生态修复重点区域识别——以合肥都市圈为例","authors":"Xiaonan Niu , Jing Zhang , Shangxiao Wang , Leli Zong , Mo Zhou , Ming Zhang","doi":"10.1016/j.ecolind.2025.113590","DOIUrl":null,"url":null,"abstract":"<div><div>Intensifying human activities have triggered significant ecological degradation, necessitating innovative approaches to ecosystem restoration. This study introduces a novel integrated methodology combining Ecological Security Patterns (ESP) and Ecological Risk Assessment (ERA) to identify priority ecological restoration areas in the Hefei Metropolitan Area. By synthesizing these complementary approaches, we overcome the limitations of individual methods and establish a comprehensive framework for prioritizing ecological restoration. We construct a complex ecological network comprising 36 source areas spanning 8313.96 km<sup>2</sup> and 92 interconnected ecological corridors extending 24,489.17 km. We have identified 73 ecological restoration nodes and 19 key restoration areas covering 544.45 km<sup>2</sup>, predominantly located at critical ecological junctions. The study categorizes restoration zones into five distinct types: river and lake wetland restoration, mine environment remediation, urban ecological landscape reconstruction, ecological corridor connectivity restoration, and soil and water conservation improvement. Combining ESP with ERA allows for the identification of regions most vulnerable to ecological damage while preserving key ecological functions and networks. Through the identification of urban ecological conflict zones, this study provides a strategic framework for enhancing ecosystem resilience and promoting sustainable urban development. This research is significant because of its potential to address the urgent need for effective ecological restoration strategies in rapidly urbanizing regions, offering a systematic approach to balance ecological preservation with urban development.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"175 ","pages":"Article 113590"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of priority areas for ecological restoration based on ecological security patterns and ecological risks: A case study of the Hefei Metropolitan Area\",\"authors\":\"Xiaonan Niu , Jing Zhang , Shangxiao Wang , Leli Zong , Mo Zhou , Ming Zhang\",\"doi\":\"10.1016/j.ecolind.2025.113590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intensifying human activities have triggered significant ecological degradation, necessitating innovative approaches to ecosystem restoration. This study introduces a novel integrated methodology combining Ecological Security Patterns (ESP) and Ecological Risk Assessment (ERA) to identify priority ecological restoration areas in the Hefei Metropolitan Area. By synthesizing these complementary approaches, we overcome the limitations of individual methods and establish a comprehensive framework for prioritizing ecological restoration. We construct a complex ecological network comprising 36 source areas spanning 8313.96 km<sup>2</sup> and 92 interconnected ecological corridors extending 24,489.17 km. We have identified 73 ecological restoration nodes and 19 key restoration areas covering 544.45 km<sup>2</sup>, predominantly located at critical ecological junctions. The study categorizes restoration zones into five distinct types: river and lake wetland restoration, mine environment remediation, urban ecological landscape reconstruction, ecological corridor connectivity restoration, and soil and water conservation improvement. Combining ESP with ERA allows for the identification of regions most vulnerable to ecological damage while preserving key ecological functions and networks. Through the identification of urban ecological conflict zones, this study provides a strategic framework for enhancing ecosystem resilience and promoting sustainable urban development. This research is significant because of its potential to address the urgent need for effective ecological restoration strategies in rapidly urbanizing regions, offering a systematic approach to balance ecological preservation with urban development.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"175 \",\"pages\":\"Article 113590\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X25005205\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X25005205","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Identification of priority areas for ecological restoration based on ecological security patterns and ecological risks: A case study of the Hefei Metropolitan Area
Intensifying human activities have triggered significant ecological degradation, necessitating innovative approaches to ecosystem restoration. This study introduces a novel integrated methodology combining Ecological Security Patterns (ESP) and Ecological Risk Assessment (ERA) to identify priority ecological restoration areas in the Hefei Metropolitan Area. By synthesizing these complementary approaches, we overcome the limitations of individual methods and establish a comprehensive framework for prioritizing ecological restoration. We construct a complex ecological network comprising 36 source areas spanning 8313.96 km2 and 92 interconnected ecological corridors extending 24,489.17 km. We have identified 73 ecological restoration nodes and 19 key restoration areas covering 544.45 km2, predominantly located at critical ecological junctions. The study categorizes restoration zones into five distinct types: river and lake wetland restoration, mine environment remediation, urban ecological landscape reconstruction, ecological corridor connectivity restoration, and soil and water conservation improvement. Combining ESP with ERA allows for the identification of regions most vulnerable to ecological damage while preserving key ecological functions and networks. Through the identification of urban ecological conflict zones, this study provides a strategic framework for enhancing ecosystem resilience and promoting sustainable urban development. This research is significant because of its potential to address the urgent need for effective ecological restoration strategies in rapidly urbanizing regions, offering a systematic approach to balance ecological preservation with urban development.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.