Gontzal Lezcano , Ribhu Gautam , Idoia Hita , Attada Yerrayya , Jinan Aljaziri , Bárbara Bastos de Freitas , Vasileios G. Samaras , Kyle J. Lauersen , S. Mani Sarathy , Pedro Castaño
{"title":"微藻特性与其快速热解产物的关联","authors":"Gontzal Lezcano , Ribhu Gautam , Idoia Hita , Attada Yerrayya , Jinan Aljaziri , Bárbara Bastos de Freitas , Vasileios G. Samaras , Kyle J. Lauersen , S. Mani Sarathy , Pedro Castaño","doi":"10.1016/j.jaap.2025.107170","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the relationships between microalgal characteristics, reaction temperature, and pyrolysis products using eight microalgal species. Proximate, ultimate, and biochemical analyses were conducted to characterize these microalgae. Fast pyrolysis was performed in a Pyroprobe® coupled to a two-dimensional gas chromatograph and a time-of-flight mass spectrometer at 450–650 °C. The solid residues ranged from 14.9–59.1 % across all pyrolysis tests. The experimental dataset comprised 24 instances with 27 features, including microalgal composition, temperature, biochar yield, and product composition. Multivariate analyses were employed to interpret this dataset, including Pearson correlation analysis, principal component analysis (PCA), and canonical correlation analysis (CCA). Pearson correlation analysis showed biochar yields positively correlated with ash and moisture contents and negatively with volatile matter; proteins exhibited the highest charring tendency. PCA identified species-specific product patterns, e.g., <em>Arthrospira (Limnospira) platensis</em> was linked to nitrogenates and aromatics, while <em>Odontella aurita</em> produced sulfur compounds despite moderate sulfur content. PCA also indicated that oxygen and lipids were not key to aromatic formation. CCA revealed that the strong correlation between pyrolysis temperature and aromatics was partly due to protein content and highlighted a distinct link between chlorophyll content and alcohol production. Overall, this work highlights the potential of innovative microalgae as feedstocks for fast pyrolysis and emphasizes the utility and potential of multivariate tools for interpreting complex experimental datasets.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"191 ","pages":"Article 107170"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking microalgae characteristics with their fast pyrolysis products\",\"authors\":\"Gontzal Lezcano , Ribhu Gautam , Idoia Hita , Attada Yerrayya , Jinan Aljaziri , Bárbara Bastos de Freitas , Vasileios G. Samaras , Kyle J. Lauersen , S. Mani Sarathy , Pedro Castaño\",\"doi\":\"10.1016/j.jaap.2025.107170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the relationships between microalgal characteristics, reaction temperature, and pyrolysis products using eight microalgal species. Proximate, ultimate, and biochemical analyses were conducted to characterize these microalgae. Fast pyrolysis was performed in a Pyroprobe® coupled to a two-dimensional gas chromatograph and a time-of-flight mass spectrometer at 450–650 °C. The solid residues ranged from 14.9–59.1 % across all pyrolysis tests. The experimental dataset comprised 24 instances with 27 features, including microalgal composition, temperature, biochar yield, and product composition. Multivariate analyses were employed to interpret this dataset, including Pearson correlation analysis, principal component analysis (PCA), and canonical correlation analysis (CCA). Pearson correlation analysis showed biochar yields positively correlated with ash and moisture contents and negatively with volatile matter; proteins exhibited the highest charring tendency. PCA identified species-specific product patterns, e.g., <em>Arthrospira (Limnospira) platensis</em> was linked to nitrogenates and aromatics, while <em>Odontella aurita</em> produced sulfur compounds despite moderate sulfur content. PCA also indicated that oxygen and lipids were not key to aromatic formation. CCA revealed that the strong correlation between pyrolysis temperature and aromatics was partly due to protein content and highlighted a distinct link between chlorophyll content and alcohol production. Overall, this work highlights the potential of innovative microalgae as feedstocks for fast pyrolysis and emphasizes the utility and potential of multivariate tools for interpreting complex experimental datasets.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"191 \",\"pages\":\"Article 107170\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237025002232\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237025002232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Linking microalgae characteristics with their fast pyrolysis products
This study investigated the relationships between microalgal characteristics, reaction temperature, and pyrolysis products using eight microalgal species. Proximate, ultimate, and biochemical analyses were conducted to characterize these microalgae. Fast pyrolysis was performed in a Pyroprobe® coupled to a two-dimensional gas chromatograph and a time-of-flight mass spectrometer at 450–650 °C. The solid residues ranged from 14.9–59.1 % across all pyrolysis tests. The experimental dataset comprised 24 instances with 27 features, including microalgal composition, temperature, biochar yield, and product composition. Multivariate analyses were employed to interpret this dataset, including Pearson correlation analysis, principal component analysis (PCA), and canonical correlation analysis (CCA). Pearson correlation analysis showed biochar yields positively correlated with ash and moisture contents and negatively with volatile matter; proteins exhibited the highest charring tendency. PCA identified species-specific product patterns, e.g., Arthrospira (Limnospira) platensis was linked to nitrogenates and aromatics, while Odontella aurita produced sulfur compounds despite moderate sulfur content. PCA also indicated that oxygen and lipids were not key to aromatic formation. CCA revealed that the strong correlation between pyrolysis temperature and aromatics was partly due to protein content and highlighted a distinct link between chlorophyll content and alcohol production. Overall, this work highlights the potential of innovative microalgae as feedstocks for fast pyrolysis and emphasizes the utility and potential of multivariate tools for interpreting complex experimental datasets.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.