黄土高原冻融循环对土壤抗侵蚀能力影响的量化研究

IF 6.3 1区 地球科学 Q1 ENGINEERING, CIVIL
Juanjuan Liu , Kuandi Zhang , Wanbao Shi , Pu Li , Xiaochao Zhang
{"title":"黄土高原冻融循环对土壤抗侵蚀能力影响的量化研究","authors":"Juanjuan Liu ,&nbsp;Kuandi Zhang ,&nbsp;Wanbao Shi ,&nbsp;Pu Li ,&nbsp;Xiaochao Zhang","doi":"10.1016/j.jhydrol.2025.133489","DOIUrl":null,"url":null,"abstract":"<div><div>Freeze–thaw cycles (FTC) influence soil erodibility (<span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span>) by altering soil properties. In seasonally frozen regions, the coupling mechanisms between FTC and water erosion obscure the roles of FTC in determining soil erosion resistance. This study combined FTC simulation with water erosion tests to investigate the erosion response mechanisms and key drivers for loess with varying textures. The FTC significantly changed the mechanical and physicochemical characteristics of five loess types (<em>P</em> &lt; 0.05), especially reducing shear strength, cohesion, and internal friction angle, with sandy loam exhibiting more severe deterioration than silt loam. Physicochemical indices showed weaker sensitivity to FTC versus mechanical properties, with coefficients of variation below 5 %. Wuzhong sandy loess retained the highest <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> post-FTC, exceeding that of the others by 1.04∼2.25 times, highlighting the dominant role of texture (21.37 % contribution). Under different initial soil moisture contents (SMC), <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> increased initially and then stabilized with successive FTC, with a threshold effect of FTC on <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> at approximately 10 FTC. Under FTC, the <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> variation rate showed a concave trend with SMC, turning point at 12 % SMC, indicating that SMC regulates freeze–thaw damage. Critical shear stress exhibited an inverse response to FTC compared to <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span>, displaying lower sensitivity. The established <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> prediction model achieved high accuracy (<span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> = 0.87, <span><math><mrow><mi>NSE</mi></mrow></math></span> = 0.86), though further validation is required beyond the design conditions. Future research should integrate laboratory and field experiments to expand model applicability. This study lays a theoretical foundation for research on soil erosion dynamics in freeze–thaw-affected areas.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"660 ","pages":"Article 133489"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the effects of freeze–thaw cycles on soil erosion resistance in the Loess Plateau, China\",\"authors\":\"Juanjuan Liu ,&nbsp;Kuandi Zhang ,&nbsp;Wanbao Shi ,&nbsp;Pu Li ,&nbsp;Xiaochao Zhang\",\"doi\":\"10.1016/j.jhydrol.2025.133489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Freeze–thaw cycles (FTC) influence soil erodibility (<span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span>) by altering soil properties. In seasonally frozen regions, the coupling mechanisms between FTC and water erosion obscure the roles of FTC in determining soil erosion resistance. This study combined FTC simulation with water erosion tests to investigate the erosion response mechanisms and key drivers for loess with varying textures. The FTC significantly changed the mechanical and physicochemical characteristics of five loess types (<em>P</em> &lt; 0.05), especially reducing shear strength, cohesion, and internal friction angle, with sandy loam exhibiting more severe deterioration than silt loam. Physicochemical indices showed weaker sensitivity to FTC versus mechanical properties, with coefficients of variation below 5 %. Wuzhong sandy loess retained the highest <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> post-FTC, exceeding that of the others by 1.04∼2.25 times, highlighting the dominant role of texture (21.37 % contribution). Under different initial soil moisture contents (SMC), <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> increased initially and then stabilized with successive FTC, with a threshold effect of FTC on <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> at approximately 10 FTC. Under FTC, the <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> variation rate showed a concave trend with SMC, turning point at 12 % SMC, indicating that SMC regulates freeze–thaw damage. Critical shear stress exhibited an inverse response to FTC compared to <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span>, displaying lower sensitivity. The established <span><math><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></math></span> prediction model achieved high accuracy (<span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> = 0.87, <span><math><mrow><mi>NSE</mi></mrow></math></span> = 0.86), though further validation is required beyond the design conditions. Future research should integrate laboratory and field experiments to expand model applicability. This study lays a theoretical foundation for research on soil erosion dynamics in freeze–thaw-affected areas.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"660 \",\"pages\":\"Article 133489\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169425008273\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425008273","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

冻融循环通过改变土壤性质来影响土壤的可蚀性。在季节性冻土区,土壤水分侵蚀与土壤水分流失的耦合机制模糊了土壤水分流失对土壤抗侵蚀能力的影响。本研究将FTC模拟与水侵蚀试验相结合,探讨不同质地黄土的侵蚀响应机制和主要驱动因素。FTC显著改变了5种黄土类型的力学和物理化学特征(P <;0.05),特别是抗剪强度、黏聚力和内摩擦角的降低,砂壤土比粉壤土劣化更严重。理化指标对FTC的敏感性弱于力学性能,变异系数在5%以下。吴中沙质黄土在ftc后的Kr值最高,是其他黄土的1.04 ~ 2.25倍,突出了质地的主导作用(贡献21.37%)。在不同初始土壤含水量(SMC)条件下,Kr随连续FTC先升高后稳定,FTC对Kr的阈值效应约为10 FTC。在FTC条件下,Kr变化率随SMC呈凹形变化,在SMC的12%处出现拐点,表明SMC对冻融损伤起调节作用。与Kr相比,临界剪应力对FTC的响应呈负相关,灵敏度较低。建立的Kr预测模型具有较高的预测精度(R2 = 0.87, NSE = 0.86),但在设计条件之外还需进一步验证。未来的研究应结合实验室和现场实验,以扩大模型的适用性。本研究为冻融区土壤侵蚀动力学研究奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying the effects of freeze–thaw cycles on soil erosion resistance in the Loess Plateau, China
Freeze–thaw cycles (FTC) influence soil erodibility (Kr) by altering soil properties. In seasonally frozen regions, the coupling mechanisms between FTC and water erosion obscure the roles of FTC in determining soil erosion resistance. This study combined FTC simulation with water erosion tests to investigate the erosion response mechanisms and key drivers for loess with varying textures. The FTC significantly changed the mechanical and physicochemical characteristics of five loess types (P < 0.05), especially reducing shear strength, cohesion, and internal friction angle, with sandy loam exhibiting more severe deterioration than silt loam. Physicochemical indices showed weaker sensitivity to FTC versus mechanical properties, with coefficients of variation below 5 %. Wuzhong sandy loess retained the highest Kr post-FTC, exceeding that of the others by 1.04∼2.25 times, highlighting the dominant role of texture (21.37 % contribution). Under different initial soil moisture contents (SMC), Kr increased initially and then stabilized with successive FTC, with a threshold effect of FTC on Kr at approximately 10 FTC. Under FTC, the Kr variation rate showed a concave trend with SMC, turning point at 12 % SMC, indicating that SMC regulates freeze–thaw damage. Critical shear stress exhibited an inverse response to FTC compared to Kr, displaying lower sensitivity. The established Kr prediction model achieved high accuracy (R2 = 0.87, NSE = 0.86), though further validation is required beyond the design conditions. Future research should integrate laboratory and field experiments to expand model applicability. This study lays a theoretical foundation for research on soil erosion dynamics in freeze–thaw-affected areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信