Feng Yin , Mani Deepika Vakkalanka , Walter Wiley , M. Shane Woolf , Yousef Basir , Kumar Shah , Aaron M. Wheeler , Moucun Yuan , William R. Mylott Jr. , Mike Baratta
{"title":"LC-MS/MS定量人血清中C4 (7α-羟基-4-胆甾醇-3-酮)的简易替代方法及其在临床研究中的应用","authors":"Feng Yin , Mani Deepika Vakkalanka , Walter Wiley , M. Shane Woolf , Yousef Basir , Kumar Shah , Aaron M. Wheeler , Moucun Yuan , William R. Mylott Jr. , Mike Baratta","doi":"10.1016/j.jchromb.2025.124651","DOIUrl":null,"url":null,"abstract":"<div><div>We present a validated LC-MS/MS assay for the quantitation of 7α-hydroxy-4-cholesten-3-one (C4), a key intermediate in the bile acid synthesis pathway from cholesterol, in human serum. A surrogate matrix approach was employed to overcome the challenges posed by the endogenous C4 levels in the biological matrix. Human serum samples were spiked with stable isotope labeled internal standard (SIL-IS), processed using supported liquid extraction (SLE), and analyzed by LC-MS/MS. Parallelism was successfully demonstrated between human serum (authentic matrix) and 5 % bovine serum albumin in phosphate buffered saline containing 0.1 % tween 20 (5 % BSA in PBST) (surrogate matrix). The assay's linear analytical range was established from 0.200 to 200 ng/mL. This validated LC-MS/MS method exhibited excellent accuracy and precision. The overall accuracy was between 97.9 % and 101 % with %CV less than 4.0 % for C4 in human serum. C4 was found to be stable in human serum for up to 24.7 h at room temperature, up to 34 days when stored at −25 °C or − 80 °C, and after five freeze/thaw cycles. The assay has been successfully applied to human serum samples to support a clinical study.</div></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1261 ","pages":"Article 124651"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple surrogate approach for the quantitation of C4 (7α-hydroxy-4-cholesten-3-one) in human serum via LC-MS/MS and its application in a clinical study\",\"authors\":\"Feng Yin , Mani Deepika Vakkalanka , Walter Wiley , M. Shane Woolf , Yousef Basir , Kumar Shah , Aaron M. Wheeler , Moucun Yuan , William R. Mylott Jr. , Mike Baratta\",\"doi\":\"10.1016/j.jchromb.2025.124651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a validated LC-MS/MS assay for the quantitation of 7α-hydroxy-4-cholesten-3-one (C4), a key intermediate in the bile acid synthesis pathway from cholesterol, in human serum. A surrogate matrix approach was employed to overcome the challenges posed by the endogenous C4 levels in the biological matrix. Human serum samples were spiked with stable isotope labeled internal standard (SIL-IS), processed using supported liquid extraction (SLE), and analyzed by LC-MS/MS. Parallelism was successfully demonstrated between human serum (authentic matrix) and 5 % bovine serum albumin in phosphate buffered saline containing 0.1 % tween 20 (5 % BSA in PBST) (surrogate matrix). The assay's linear analytical range was established from 0.200 to 200 ng/mL. This validated LC-MS/MS method exhibited excellent accuracy and precision. The overall accuracy was between 97.9 % and 101 % with %CV less than 4.0 % for C4 in human serum. C4 was found to be stable in human serum for up to 24.7 h at room temperature, up to 34 days when stored at −25 °C or − 80 °C, and after five freeze/thaw cycles. The assay has been successfully applied to human serum samples to support a clinical study.</div></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1261 \",\"pages\":\"Article 124651\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023225002053\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023225002053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A simple surrogate approach for the quantitation of C4 (7α-hydroxy-4-cholesten-3-one) in human serum via LC-MS/MS and its application in a clinical study
We present a validated LC-MS/MS assay for the quantitation of 7α-hydroxy-4-cholesten-3-one (C4), a key intermediate in the bile acid synthesis pathway from cholesterol, in human serum. A surrogate matrix approach was employed to overcome the challenges posed by the endogenous C4 levels in the biological matrix. Human serum samples were spiked with stable isotope labeled internal standard (SIL-IS), processed using supported liquid extraction (SLE), and analyzed by LC-MS/MS. Parallelism was successfully demonstrated between human serum (authentic matrix) and 5 % bovine serum albumin in phosphate buffered saline containing 0.1 % tween 20 (5 % BSA in PBST) (surrogate matrix). The assay's linear analytical range was established from 0.200 to 200 ng/mL. This validated LC-MS/MS method exhibited excellent accuracy and precision. The overall accuracy was between 97.9 % and 101 % with %CV less than 4.0 % for C4 in human serum. C4 was found to be stable in human serum for up to 24.7 h at room temperature, up to 34 days when stored at −25 °C or − 80 °C, and after five freeze/thaw cycles. The assay has been successfully applied to human serum samples to support a clinical study.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.