利用高光谱成像结合复制分配策略增强的堆叠集成学习模型预测白酒香气成分的组成

IF 4.3 2区 化学 Q1 SPECTROSCOPY
Yuexiang Huang , Jianping Tian , Xinjun Hu , Haili Yang , Liangliang Xie , Yifei Zhou , Yuanyuan Xia , Dan Huang , Kaiping He
{"title":"利用高光谱成像结合复制分配策略增强的堆叠集成学习模型预测白酒香气成分的组成","authors":"Yuexiang Huang ,&nbsp;Jianping Tian ,&nbsp;Xinjun Hu ,&nbsp;Haili Yang ,&nbsp;Liangliang Xie ,&nbsp;Yifei Zhou ,&nbsp;Yuanyuan Xia ,&nbsp;Dan Huang ,&nbsp;Kaiping He","doi":"10.1016/j.saa.2025.126398","DOIUrl":null,"url":null,"abstract":"<div><div>Ester and acid aroma compounds are crucial components affecting the fragrance of Baijiu, and their composition can endow the Baijiu with a fruity, acidic, floral, or roasted aroma. This study aims to quantitatively detect the ester and acid content in Soy Sauce-Aroma Type Baijiu (SSAB) using hyperspectral imaging (HSI) technology and a stacked ensemble learning (SEL) model. To mitigate the impact of data imbalance, an improved oversampling technique known as the replication allocation strategy (RAS) was utilized. After comparing the study results, it was found that the established RF-RAS-SEL model yielded the best performance, with an Rp2 of 0.9803 and RMSEP of 0.3314 mg/L for predicting ester content and an Rp2 of 0.9914 and an RMSEP of 0.4565 mg/L for predicting acid content. These findings demonstrate that HSI can achieve the non-destructive and accurate detection of esters and acids in SSAB, providing a novel method for analyzing Baijiu aroma.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"341 ","pages":"Article 126398"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the composition of aroma components in Baijiu using hyperspectral imaging combined with a replication allocation strategy-enhanced stacked ensemble learning model\",\"authors\":\"Yuexiang Huang ,&nbsp;Jianping Tian ,&nbsp;Xinjun Hu ,&nbsp;Haili Yang ,&nbsp;Liangliang Xie ,&nbsp;Yifei Zhou ,&nbsp;Yuanyuan Xia ,&nbsp;Dan Huang ,&nbsp;Kaiping He\",\"doi\":\"10.1016/j.saa.2025.126398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ester and acid aroma compounds are crucial components affecting the fragrance of Baijiu, and their composition can endow the Baijiu with a fruity, acidic, floral, or roasted aroma. This study aims to quantitatively detect the ester and acid content in Soy Sauce-Aroma Type Baijiu (SSAB) using hyperspectral imaging (HSI) technology and a stacked ensemble learning (SEL) model. To mitigate the impact of data imbalance, an improved oversampling technique known as the replication allocation strategy (RAS) was utilized. After comparing the study results, it was found that the established RF-RAS-SEL model yielded the best performance, with an Rp2 of 0.9803 and RMSEP of 0.3314 mg/L for predicting ester content and an Rp2 of 0.9914 and an RMSEP of 0.4565 mg/L for predicting acid content. These findings demonstrate that HSI can achieve the non-destructive and accurate detection of esters and acids in SSAB, providing a novel method for analyzing Baijiu aroma.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"341 \",\"pages\":\"Article 126398\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142525007048\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525007048","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

酯类和酸类香气化合物是影响白酒香味的关键成分,它们的成分可以赋予白酒果香、酸性、花香或烘烤香气。本研究旨在利用高光谱成像(HSI)技术和堆叠集成学习(SEL)模型对酱油-香气型白酒(SSAB)中的酯酸含量进行定量检测。为了减轻数据不平衡的影响,使用了一种改进的过采样技术,称为复制分配策略(RAS)。对比研究结果发现,所建立的RF-RAS-SEL模型效果最佳,预测酯含量的Rp2为0.9803,RMSEP为0.3314 mg/L,预测酸含量的Rp2为0.9914,RMSEP为0.4565 mg/L。结果表明,HSI法可以实现对白酒中酯类和酸类的无损、准确检测,为白酒香气分析提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the composition of aroma components in Baijiu using hyperspectral imaging combined with a replication allocation strategy-enhanced stacked ensemble learning model
Ester and acid aroma compounds are crucial components affecting the fragrance of Baijiu, and their composition can endow the Baijiu with a fruity, acidic, floral, or roasted aroma. This study aims to quantitatively detect the ester and acid content in Soy Sauce-Aroma Type Baijiu (SSAB) using hyperspectral imaging (HSI) technology and a stacked ensemble learning (SEL) model. To mitigate the impact of data imbalance, an improved oversampling technique known as the replication allocation strategy (RAS) was utilized. After comparing the study results, it was found that the established RF-RAS-SEL model yielded the best performance, with an Rp2 of 0.9803 and RMSEP of 0.3314 mg/L for predicting ester content and an Rp2 of 0.9914 and an RMSEP of 0.4565 mg/L for predicting acid content. These findings demonstrate that HSI can achieve the non-destructive and accurate detection of esters and acids in SSAB, providing a novel method for analyzing Baijiu aroma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信