Kai Zhang , Hongyu Guo , Norbert Klitzsch , Daping Xia , Zhazha Hu , Xiao Liu , Bin Zhang , Hao Chen
{"title":"磁铁矿厌氧消化提高褐煤清洁利用的可行性评价","authors":"Kai Zhang , Hongyu Guo , Norbert Klitzsch , Daping Xia , Zhazha Hu , Xiao Liu , Bin Zhang , Hao Chen","doi":"10.1016/j.ibiod.2025.106122","DOIUrl":null,"url":null,"abstract":"<div><div>This study pioneers the application of magnetite in anaerobic digestion of lignite, achieving dual enhancement of biomethane production and coal-derived waste valorization. At an optimal dosage of 2 g, magnetite increased cumulative methane yield by 55.4 % compared to the control, driven by selective enrichment of electroactive bacteria such as <em>norank_f_Synergistaceae</em> and <em>Proteiniclasticum</em>, alongside DIET-driven methanogens dominated by <em>Methanosaeta</em> at 86.29 % abundance. Concurrently, magnetite induced structural modification of lignite through degradation of recalcitrant aliphatic hydrocarbons and a 53.5 % increase in specific surface area from 7.772 to 11.924 m<sup>2</sup>/g, collectively improving the combustion efficiency of residual coal. These findings establish magnetite as a bifunctional catalyst that unlocks the bioenergy potential of low-rank coals while converting residual waste into cleaner solid fuels. The strategy offers coal-intensive regions a sustainable pathway to integrate biogas production with circular coal waste management.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"203 ","pages":"Article 106122"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility assessment of magnetite for enhancing the clean utilization of lignite through anaerobic digestion\",\"authors\":\"Kai Zhang , Hongyu Guo , Norbert Klitzsch , Daping Xia , Zhazha Hu , Xiao Liu , Bin Zhang , Hao Chen\",\"doi\":\"10.1016/j.ibiod.2025.106122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study pioneers the application of magnetite in anaerobic digestion of lignite, achieving dual enhancement of biomethane production and coal-derived waste valorization. At an optimal dosage of 2 g, magnetite increased cumulative methane yield by 55.4 % compared to the control, driven by selective enrichment of electroactive bacteria such as <em>norank_f_Synergistaceae</em> and <em>Proteiniclasticum</em>, alongside DIET-driven methanogens dominated by <em>Methanosaeta</em> at 86.29 % abundance. Concurrently, magnetite induced structural modification of lignite through degradation of recalcitrant aliphatic hydrocarbons and a 53.5 % increase in specific surface area from 7.772 to 11.924 m<sup>2</sup>/g, collectively improving the combustion efficiency of residual coal. These findings establish magnetite as a bifunctional catalyst that unlocks the bioenergy potential of low-rank coals while converting residual waste into cleaner solid fuels. The strategy offers coal-intensive regions a sustainable pathway to integrate biogas production with circular coal waste management.</div></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":\"203 \",\"pages\":\"Article 106122\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096483052500126X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096483052500126X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Feasibility assessment of magnetite for enhancing the clean utilization of lignite through anaerobic digestion
This study pioneers the application of magnetite in anaerobic digestion of lignite, achieving dual enhancement of biomethane production and coal-derived waste valorization. At an optimal dosage of 2 g, magnetite increased cumulative methane yield by 55.4 % compared to the control, driven by selective enrichment of electroactive bacteria such as norank_f_Synergistaceae and Proteiniclasticum, alongside DIET-driven methanogens dominated by Methanosaeta at 86.29 % abundance. Concurrently, magnetite induced structural modification of lignite through degradation of recalcitrant aliphatic hydrocarbons and a 53.5 % increase in specific surface area from 7.772 to 11.924 m2/g, collectively improving the combustion efficiency of residual coal. These findings establish magnetite as a bifunctional catalyst that unlocks the bioenergy potential of low-rank coals while converting residual waste into cleaner solid fuels. The strategy offers coal-intensive regions a sustainable pathway to integrate biogas production with circular coal waste management.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.