人工智能驱动的口腔肿瘤早期诊断和预后的生物标志物发现

Suresh Munnangi, Satheeskumar R
{"title":"人工智能驱动的口腔肿瘤早期诊断和预后的生物标志物发现","authors":"Suresh Munnangi,&nbsp;Satheeskumar R","doi":"10.1016/j.oor.2025.100749","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an AI-powered multi-omics framework for early detection and prognosis of oral squamous cell carcinoma (OSCC), integrating genomic, transcriptomic, and proteomic data through advanced deep learning architectures. Analysing 1527 OSCC samples from TCGA and GEO databases, we developed a novel multimodal pipeline combining: (1) graph neural networks for heterogeneous data fusion, (2) LASSO regression for robust feature selection, and (3) explainable AI (SHAP, attention mechanisms) for clinical transparency. Our CNN-based diagnostic model demonstrated exceptional performance (accuracy: 93.2 %, 95 % CI: 91.4–94.7; sensitivity: 91.5 % for Stage I tumours; AUC: 0.96), significantly surpassing conventional histopathology (p &lt; 0.001). Three clinically validated biomarker panels were established: (i) a diagnostic panel (TP53/CDKN2A/EGFR, 94.1 % specificity), (ii) an HPV-associated prognostic panel (P16/RB1/E2F1), and (iii) a metastasis prediction panel (TWIST1/VIM/CDH1, C-index = 0.82). Prospective validation in 412 patients showed 43 % reduction in false negatives (15.2 %–8.7 %) with 82 % pathologist concordance. The modular platform addresses critical clinical needs: high-risk screening, therapeutic decision support, and intraoperative margin assessment. IRB-approved implementation confirms real-world viability, positioning this framework as a transformative tool for OSCC precision oncology.</div></div>","PeriodicalId":94378,"journal":{"name":"Oral Oncology Reports","volume":"14 ","pages":"Article 100749"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-driven biomarker discovery for early diagnosis and prognosis in oral oncology\",\"authors\":\"Suresh Munnangi,&nbsp;Satheeskumar R\",\"doi\":\"10.1016/j.oor.2025.100749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an AI-powered multi-omics framework for early detection and prognosis of oral squamous cell carcinoma (OSCC), integrating genomic, transcriptomic, and proteomic data through advanced deep learning architectures. Analysing 1527 OSCC samples from TCGA and GEO databases, we developed a novel multimodal pipeline combining: (1) graph neural networks for heterogeneous data fusion, (2) LASSO regression for robust feature selection, and (3) explainable AI (SHAP, attention mechanisms) for clinical transparency. Our CNN-based diagnostic model demonstrated exceptional performance (accuracy: 93.2 %, 95 % CI: 91.4–94.7; sensitivity: 91.5 % for Stage I tumours; AUC: 0.96), significantly surpassing conventional histopathology (p &lt; 0.001). Three clinically validated biomarker panels were established: (i) a diagnostic panel (TP53/CDKN2A/EGFR, 94.1 % specificity), (ii) an HPV-associated prognostic panel (P16/RB1/E2F1), and (iii) a metastasis prediction panel (TWIST1/VIM/CDH1, C-index = 0.82). Prospective validation in 412 patients showed 43 % reduction in false negatives (15.2 %–8.7 %) with 82 % pathologist concordance. The modular platform addresses critical clinical needs: high-risk screening, therapeutic decision support, and intraoperative margin assessment. IRB-approved implementation confirms real-world viability, positioning this framework as a transformative tool for OSCC precision oncology.</div></div>\",\"PeriodicalId\":94378,\"journal\":{\"name\":\"Oral Oncology Reports\",\"volume\":\"14 \",\"pages\":\"Article 100749\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral Oncology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772906025000378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral Oncology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772906025000378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个人工智能驱动的多组学框架,用于口腔鳞状细胞癌(OSCC)的早期检测和预后,通过先进的深度学习架构整合基因组、转录组学和蛋白质组学数据。分析了来自TCGA和GEO数据库的1527个OSCC样本,我们开发了一种新的多模式管道组合:(1)图神经网络用于异构数据融合,(2)LASSO回归用于鲁棒特征选择,(3)可解释人工智能(SHAP,注意力机制)用于临床透明度。我们基于cnn的诊断模型表现出优异的性能(准确率:93.2%,95% CI: 91.4-94.7;I期肿瘤敏感性:91.5%;AUC: 0.96),显著优于常规组织病理学(p <;0.001)。建立了三个临床验证的生物标志物小组:(i)诊断小组(TP53/CDKN2A/EGFR, 94.1%特异性),(ii) hpv相关预后小组(P16/RB1/E2F1), (iii)转移预测小组(TWIST1/VIM/CDH1, c -指数= 0.82)。412例患者的前瞻性验证显示假阴性减少43%(15.2% - 8.7%),病理一致性为82%。模块化平台解决了关键的临床需求:高风险筛查、治疗决策支持和术中边缘评估。irb批准的实施证实了现实世界的可行性,将该框架定位为OSCC精确肿瘤学的变革工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-driven biomarker discovery for early diagnosis and prognosis in oral oncology
This study presents an AI-powered multi-omics framework for early detection and prognosis of oral squamous cell carcinoma (OSCC), integrating genomic, transcriptomic, and proteomic data through advanced deep learning architectures. Analysing 1527 OSCC samples from TCGA and GEO databases, we developed a novel multimodal pipeline combining: (1) graph neural networks for heterogeneous data fusion, (2) LASSO regression for robust feature selection, and (3) explainable AI (SHAP, attention mechanisms) for clinical transparency. Our CNN-based diagnostic model demonstrated exceptional performance (accuracy: 93.2 %, 95 % CI: 91.4–94.7; sensitivity: 91.5 % for Stage I tumours; AUC: 0.96), significantly surpassing conventional histopathology (p < 0.001). Three clinically validated biomarker panels were established: (i) a diagnostic panel (TP53/CDKN2A/EGFR, 94.1 % specificity), (ii) an HPV-associated prognostic panel (P16/RB1/E2F1), and (iii) a metastasis prediction panel (TWIST1/VIM/CDH1, C-index = 0.82). Prospective validation in 412 patients showed 43 % reduction in false negatives (15.2 %–8.7 %) with 82 % pathologist concordance. The modular platform addresses critical clinical needs: high-risk screening, therapeutic decision support, and intraoperative margin assessment. IRB-approved implementation confirms real-world viability, positioning this framework as a transformative tool for OSCC precision oncology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信