激活烧结制备难熔高熵合金/Ni复合材料的原位互锁界面

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiao Yang , De Yang , Hai Huang , Shubang Wang , Zehai Zhang , Zhimin Liang , Liwei Wang , Zhenzhen Peng , Ying Liu , Dianlong Wang
{"title":"激活烧结制备难熔高熵合金/Ni复合材料的原位互锁界面","authors":"Xiao Yang ,&nbsp;De Yang ,&nbsp;Hai Huang ,&nbsp;Shubang Wang ,&nbsp;Zehai Zhang ,&nbsp;Zhimin Liang ,&nbsp;Liwei Wang ,&nbsp;Zhenzhen Peng ,&nbsp;Ying Liu ,&nbsp;Dianlong Wang","doi":"10.1016/j.msea.2025.148500","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposed a simple bionic-inspired strategy to in situ construct a root-like interfacial interlocked structure in the refractory high-entropy alloys (RHEA) particle-reinforced Ni matrix composites by activated sintering. The results showed that at the RHEA-Ni interface, Ni element preferred to aggregate inside the RHEA near the interface by grain boundaries (GBs) wetting and far away from the interface by GBs prewetting. Subsequently, the Ni-rich liquid-like film crystallized into Ni<sub>3</sub>(Ta, Nb), Ni<sub>2</sub>(Ta, Nb) phases due to relatively low Gibbs free energy change (Δ<em>G</em>) and high diffusion rate, in situ forming root-like interlocked structure anchored on the RHEA particle. At the root-like interlocked interface, the Ni-Ta intermetallic compounds (IMCs) and BCC phase, serving as alternating hard and soft oriented phases, enhance the interlocked interface hardness and elastic modulus. The finite element method proved that the root-like interlocked structure reduced the demand for interfacial reaction layer strength and the degree of interfacial stress concentration. Compared to the pure Ni bulk, the 10 vol% RHEA/Ni composite obtains 41.8 % and 93.4 % in ultimate tensile strength (UTS) to 509 MPa and yield strength (YS) to 205 MPa, respectively, while maintaining an acceptable elongation of 15.8 %. This work offers a novel approach to in situ synthesize the bionic configuration interface structure for the enhanced interfacial bonding and optimized interfacial stress distribution of the Ni matrix composites.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"939 ","pages":"Article 148500"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root inspired in situ interlocked interface for strength and ductility combination of refractory high-entropy alloys/Ni composites by activated sintering\",\"authors\":\"Xiao Yang ,&nbsp;De Yang ,&nbsp;Hai Huang ,&nbsp;Shubang Wang ,&nbsp;Zehai Zhang ,&nbsp;Zhimin Liang ,&nbsp;Liwei Wang ,&nbsp;Zhenzhen Peng ,&nbsp;Ying Liu ,&nbsp;Dianlong Wang\",\"doi\":\"10.1016/j.msea.2025.148500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposed a simple bionic-inspired strategy to in situ construct a root-like interfacial interlocked structure in the refractory high-entropy alloys (RHEA) particle-reinforced Ni matrix composites by activated sintering. The results showed that at the RHEA-Ni interface, Ni element preferred to aggregate inside the RHEA near the interface by grain boundaries (GBs) wetting and far away from the interface by GBs prewetting. Subsequently, the Ni-rich liquid-like film crystallized into Ni<sub>3</sub>(Ta, Nb), Ni<sub>2</sub>(Ta, Nb) phases due to relatively low Gibbs free energy change (Δ<em>G</em>) and high diffusion rate, in situ forming root-like interlocked structure anchored on the RHEA particle. At the root-like interlocked interface, the Ni-Ta intermetallic compounds (IMCs) and BCC phase, serving as alternating hard and soft oriented phases, enhance the interlocked interface hardness and elastic modulus. The finite element method proved that the root-like interlocked structure reduced the demand for interfacial reaction layer strength and the degree of interfacial stress concentration. Compared to the pure Ni bulk, the 10 vol% RHEA/Ni composite obtains 41.8 % and 93.4 % in ultimate tensile strength (UTS) to 509 MPa and yield strength (YS) to 205 MPa, respectively, while maintaining an acceptable elongation of 15.8 %. This work offers a novel approach to in situ synthesize the bionic configuration interface structure for the enhanced interfacial bonding and optimized interfacial stress distribution of the Ni matrix composites.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"939 \",\"pages\":\"Article 148500\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325007245\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325007245","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本工作提出了一种简单的仿生学启发策略,通过激活烧结在难熔高熵合金(RHEA)颗粒增强镍基复合材料中原位构建根状界面联锁结构。结果表明:在界面处,Ni元素倾向于通过晶界润湿在界面附近聚集,通过晶界预润湿在界面远处聚集。随后,由于相对较低的吉布斯自由能变化(ΔG)和较高的扩散速率,富ni的液态膜结晶成Ni3(Ta, Nb)、Ni2(Ta, Nb)相,在原位形成锚定在RHEA粒子上的根状互锁结构。在根状联锁界面处,Ni-Ta金属间化合物(IMCs)和BCC相作为软硬相交替存在,提高了联锁界面的硬度和弹性模量。有限元方法证明,根状联锁结构降低了对界面反应层强度的要求和界面应力集中程度。与纯Ni块体相比,10 vol% RHEA/Ni复合材料的极限抗拉强度(UTS)达到509 MPa,屈服强度(YS)达到205 MPa,分别提高了41.8%和93.4%,同时伸长率保持在15.8%。本工作为原位合成仿生构型界面结构提供了一种新的方法,以增强界面结合,优化界面应力分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Root inspired in situ interlocked interface for strength and ductility combination of refractory high-entropy alloys/Ni composites by activated sintering
This work proposed a simple bionic-inspired strategy to in situ construct a root-like interfacial interlocked structure in the refractory high-entropy alloys (RHEA) particle-reinforced Ni matrix composites by activated sintering. The results showed that at the RHEA-Ni interface, Ni element preferred to aggregate inside the RHEA near the interface by grain boundaries (GBs) wetting and far away from the interface by GBs prewetting. Subsequently, the Ni-rich liquid-like film crystallized into Ni3(Ta, Nb), Ni2(Ta, Nb) phases due to relatively low Gibbs free energy change (ΔG) and high diffusion rate, in situ forming root-like interlocked structure anchored on the RHEA particle. At the root-like interlocked interface, the Ni-Ta intermetallic compounds (IMCs) and BCC phase, serving as alternating hard and soft oriented phases, enhance the interlocked interface hardness and elastic modulus. The finite element method proved that the root-like interlocked structure reduced the demand for interfacial reaction layer strength and the degree of interfacial stress concentration. Compared to the pure Ni bulk, the 10 vol% RHEA/Ni composite obtains 41.8 % and 93.4 % in ultimate tensile strength (UTS) to 509 MPa and yield strength (YS) to 205 MPa, respectively, while maintaining an acceptable elongation of 15.8 %. This work offers a novel approach to in situ synthesize the bionic configuration interface structure for the enhanced interfacial bonding and optimized interfacial stress distribution of the Ni matrix composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信