Longfei Wang , Wentao Zhuo , Tao He , Zongyi Peng , You Mou , Minyue Wan , Xinnan Pan , Yi Li , Zhengjian Yang
{"title":"微生物在水工混凝土结构中的作用:氨和硫酸盐对群落结构、功能和生物膜形态的影响","authors":"Longfei Wang , Wentao Zhuo , Tao He , Zongyi Peng , You Mou , Minyue Wan , Xinnan Pan , Yi Li , Zhengjian Yang","doi":"10.1016/j.jes.2024.12.027","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial corrosion of hydraulic concrete structures (HCSs) has received increasing research concerns. However, knowledge on the morphology of attached biofilms, as well as the community structures and functions cultivated under variable nutrient levels is lacking. Here, biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored. From field sampling, NH<sub>4</sub><sup>+</sup>-N was proven key factor governing community structure in attached biofilms, verifying the reliability of selecting target nutrient species in batch experiments. Biofilms exhibited significant compositional differences in field sampling and incubation experiments. As the nutrient increased in batch experiments, the growth of biofilms gradually slowed down and uneven distribution was detected. The proportions of proteins and β-<span>d</span>-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients. With the increased of nutrients, the mass losses of concretes exhibited an increase, reaching a highest value of 2.37 % in the presence of 20 mg/L of ammonia. Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient. The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia. While the communities and their functions remained relatively more stable responding to sulfate gradient. Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients, which is of significance for the operation and maintenance of hydraulic engineering structures.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"157 ","pages":"Pages 430-442"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into microbial actions on hydraulic concrete structures: Effects of ammonia and sulfate on community structure, function and biofilm morphology\",\"authors\":\"Longfei Wang , Wentao Zhuo , Tao He , Zongyi Peng , You Mou , Minyue Wan , Xinnan Pan , Yi Li , Zhengjian Yang\",\"doi\":\"10.1016/j.jes.2024.12.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial corrosion of hydraulic concrete structures (HCSs) has received increasing research concerns. However, knowledge on the morphology of attached biofilms, as well as the community structures and functions cultivated under variable nutrient levels is lacking. Here, biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored. From field sampling, NH<sub>4</sub><sup>+</sup>-N was proven key factor governing community structure in attached biofilms, verifying the reliability of selecting target nutrient species in batch experiments. Biofilms exhibited significant compositional differences in field sampling and incubation experiments. As the nutrient increased in batch experiments, the growth of biofilms gradually slowed down and uneven distribution was detected. The proportions of proteins and β-<span>d</span>-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients. With the increased of nutrients, the mass losses of concretes exhibited an increase, reaching a highest value of 2.37 % in the presence of 20 mg/L of ammonia. Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient. The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia. While the communities and their functions remained relatively more stable responding to sulfate gradient. Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients, which is of significance for the operation and maintenance of hydraulic engineering structures.</div></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":\"157 \",\"pages\":\"Pages 430-442\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224005928\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224005928","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Insights into microbial actions on hydraulic concrete structures: Effects of ammonia and sulfate on community structure, function and biofilm morphology
Microbial corrosion of hydraulic concrete structures (HCSs) has received increasing research concerns. However, knowledge on the morphology of attached biofilms, as well as the community structures and functions cultivated under variable nutrient levels is lacking. Here, biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored. From field sampling, NH4+-N was proven key factor governing community structure in attached biofilms, verifying the reliability of selecting target nutrient species in batch experiments. Biofilms exhibited significant compositional differences in field sampling and incubation experiments. As the nutrient increased in batch experiments, the growth of biofilms gradually slowed down and uneven distribution was detected. The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients. With the increased of nutrients, the mass losses of concretes exhibited an increase, reaching a highest value of 2.37 % in the presence of 20 mg/L of ammonia. Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient. The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia. While the communities and their functions remained relatively more stable responding to sulfate gradient. Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients, which is of significance for the operation and maintenance of hydraulic engineering structures.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.