{"title":"将布氏杆菌解毒脂多糖和水解o -多糖与破伤风类毒素联合或结合免疫BALB/c小鼠,可增强对病原体的保护性免疫反应","authors":"Nima Khoramabadi , Reza Hosseini Doust , Ashraf Mohabati Mobarez , Reza Shapouri","doi":"10.1016/j.cimid.2025.102357","DOIUrl":null,"url":null,"abstract":"<div><div>Lipopolysaccharide (LPS) is the major surface antigen of <em>Brucella</em>, an intracellular pathogen that causes brucellosis in both animals and humans. A deeper understanding of the immune responses elicited by this key antigen may offer valuable insights for the development of effective vaccines for use in both humans and animals. In this study, detoxified LPS (d-LPS) and hydrolytic O-polysaccharide (OPS) from <em>B. melitensis</em> were prepared and separately conjugated to tetanus toxoid (TT) as a carrier protein. The resulting conjugates, d-LPS-TT and OPS-TT, as well as mixture of d-LPS+TT and OPS+TT, were used to immunize separate groups of BALB/c mice. The conjugated antigens induced significant IgG2a-specific serum responses targeting the polysaccharide components. Furthermore, mice immunized with d-LPS-TT and OPS-TT demonstrated elevated levels of IL-12 and IFN-γ following intraperitoneal challenge with <em>B. melitensis</em> 16 M. Notably, the strongest protective immune responses were observed in mice receiving the d-LPS-TT. Most previous studies have attributed protective responses primarily to specific serum antibodies. Although antibodies against Brucella polysaccharides typically associated with T-helper 2 (Th2) type responses, develop during infection, they are insufficient to eliminate the intracellular pathogen from the host. While the precise mechanism remain to be fully elucidated, our findings suggest that immunization with covalently conjugated polysaccharide antigens may promote T-helper 1(Th1) type cellular immunity, which appear to play a more pivotal role in protection against <em>B. melitensis</em>.</div></div>","PeriodicalId":50999,"journal":{"name":"Comparative Immunology Microbiology and Infectious Diseases","volume":"121 ","pages":"Article 102357"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunization of BALB/c mice with detoxified lipopolysaccharide and hydrolytic O-polysaccharide from Brucella melitensis either in combination with or conjugated to tetanus toxoid, enhances protective immune responses against the pathogen\",\"authors\":\"Nima Khoramabadi , Reza Hosseini Doust , Ashraf Mohabati Mobarez , Reza Shapouri\",\"doi\":\"10.1016/j.cimid.2025.102357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lipopolysaccharide (LPS) is the major surface antigen of <em>Brucella</em>, an intracellular pathogen that causes brucellosis in both animals and humans. A deeper understanding of the immune responses elicited by this key antigen may offer valuable insights for the development of effective vaccines for use in both humans and animals. In this study, detoxified LPS (d-LPS) and hydrolytic O-polysaccharide (OPS) from <em>B. melitensis</em> were prepared and separately conjugated to tetanus toxoid (TT) as a carrier protein. The resulting conjugates, d-LPS-TT and OPS-TT, as well as mixture of d-LPS+TT and OPS+TT, were used to immunize separate groups of BALB/c mice. The conjugated antigens induced significant IgG2a-specific serum responses targeting the polysaccharide components. Furthermore, mice immunized with d-LPS-TT and OPS-TT demonstrated elevated levels of IL-12 and IFN-γ following intraperitoneal challenge with <em>B. melitensis</em> 16 M. Notably, the strongest protective immune responses were observed in mice receiving the d-LPS-TT. Most previous studies have attributed protective responses primarily to specific serum antibodies. Although antibodies against Brucella polysaccharides typically associated with T-helper 2 (Th2) type responses, develop during infection, they are insufficient to eliminate the intracellular pathogen from the host. While the precise mechanism remain to be fully elucidated, our findings suggest that immunization with covalently conjugated polysaccharide antigens may promote T-helper 1(Th1) type cellular immunity, which appear to play a more pivotal role in protection against <em>B. melitensis</em>.</div></div>\",\"PeriodicalId\":50999,\"journal\":{\"name\":\"Comparative Immunology Microbiology and Infectious Diseases\",\"volume\":\"121 \",\"pages\":\"Article 102357\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Immunology Microbiology and Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147957125000657\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Immunology Microbiology and Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147957125000657","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Immunization of BALB/c mice with detoxified lipopolysaccharide and hydrolytic O-polysaccharide from Brucella melitensis either in combination with or conjugated to tetanus toxoid, enhances protective immune responses against the pathogen
Lipopolysaccharide (LPS) is the major surface antigen of Brucella, an intracellular pathogen that causes brucellosis in both animals and humans. A deeper understanding of the immune responses elicited by this key antigen may offer valuable insights for the development of effective vaccines for use in both humans and animals. In this study, detoxified LPS (d-LPS) and hydrolytic O-polysaccharide (OPS) from B. melitensis were prepared and separately conjugated to tetanus toxoid (TT) as a carrier protein. The resulting conjugates, d-LPS-TT and OPS-TT, as well as mixture of d-LPS+TT and OPS+TT, were used to immunize separate groups of BALB/c mice. The conjugated antigens induced significant IgG2a-specific serum responses targeting the polysaccharide components. Furthermore, mice immunized with d-LPS-TT and OPS-TT demonstrated elevated levels of IL-12 and IFN-γ following intraperitoneal challenge with B. melitensis 16 M. Notably, the strongest protective immune responses were observed in mice receiving the d-LPS-TT. Most previous studies have attributed protective responses primarily to specific serum antibodies. Although antibodies against Brucella polysaccharides typically associated with T-helper 2 (Th2) type responses, develop during infection, they are insufficient to eliminate the intracellular pathogen from the host. While the precise mechanism remain to be fully elucidated, our findings suggest that immunization with covalently conjugated polysaccharide antigens may promote T-helper 1(Th1) type cellular immunity, which appear to play a more pivotal role in protection against B. melitensis.
期刊介绍:
Comparative Immunology, Microbiology & Infectious Diseases aims to respond to the concept of "One Medicine" and to provide a venue for scientific exchange. Based on the concept of "Comparative Medicine" interdisciplinary cooperation between specialists in human and animal medicine is of mutual interest and benefit. Therefore, there is need to combine the respective interest of physicians, veterinarians and other health professionals for comparative studies relevant to either human or animal medicine .
The journal is open to subjects of common interest related to the immunology, immunopathology, microbiology, parasitology and epidemiology of human and animal infectious diseases, especially zoonotic infections, and animal models of human infectious diseases. The role of environmental factors in disease emergence is emphasized. CIMID is mainly focusing on applied veterinary and human medicine rather than on fundamental experimental research.