锂离子电池回收过程中有害石墨(nmc111)的KOH活化活化及功能碳设计

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bartosz Dziejarski , Jose Eduardo Arevalo Fester , Jarosław Serafin , Martina Petranikova , Eric Tam , Anna Martinelli , Renata Krzyżyńska , Klas Andersson , Pavleta Knutsson
{"title":"锂离子电池回收过程中有害石墨(nmc111)的KOH活化活化及功能碳设计","authors":"Bartosz Dziejarski ,&nbsp;Jose Eduardo Arevalo Fester ,&nbsp;Jarosław Serafin ,&nbsp;Martina Petranikova ,&nbsp;Eric Tam ,&nbsp;Anna Martinelli ,&nbsp;Renata Krzyżyńska ,&nbsp;Klas Andersson ,&nbsp;Pavleta Knutsson","doi":"10.1016/j.matdes.2025.114073","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid adoption of lithium-ion batteries (LiBs) in energy storage has driven research into resource recovery. This study converts hazardous graphite from the black mass (NMC 111) of spent LiBs into functional activated carbons (ACs) via KOH activation. Tailoring the synthesis at 800 °C and a graphite-to-KOH ratio of 1:6 produced AC with a surface area of 678 m<sup>2</sup>/g and a total pore volume of 0.442 cm<sup>3</sup>/g. The material showed a balanced micropore–mesopore structure, with micropores contributing 53 % of the total pore volume. The material showed a balanced micropore–mesopore structure, with micropores contributing 53 % of the total volume. XRD confirmed preserved graphitic crystallinity with a dominant (002) peak at 26.52°. Raman spectroscopy indicated increased defect density (I<sub>D</sub>/I<sub>G</sub> = 1.053), facilitating porosity formation. SEM and TEM revealed a transition from smooth graphite layers to a porous, defect-rich structure, with TEM highlighting mesopore-like voids and distorted graphitic domains featuring edge defects. XPS identified surface modifications, including a higher proportion of sp<sup>2</sup> carbon and oxygen-containing groups (C–O, C=O, C-OH, CO<sub>3</sub><sup>2−</sup>). TGA demonstrated stability (∼900 °C) under inert conditions and enhanced reactivity in oxidative environments. This work valorizes LiB-derived graphite waste into ACs, supporting circular economy strategies and demonstrating potential for industrial scalability.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"254 ","pages":"Article 114073"},"PeriodicalIF":7.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valorization of hazardous graphite from black mass (NMC 111) of lithium-ion battery recycling via KOH activation for functional carbon design\",\"authors\":\"Bartosz Dziejarski ,&nbsp;Jose Eduardo Arevalo Fester ,&nbsp;Jarosław Serafin ,&nbsp;Martina Petranikova ,&nbsp;Eric Tam ,&nbsp;Anna Martinelli ,&nbsp;Renata Krzyżyńska ,&nbsp;Klas Andersson ,&nbsp;Pavleta Knutsson\",\"doi\":\"10.1016/j.matdes.2025.114073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid adoption of lithium-ion batteries (LiBs) in energy storage has driven research into resource recovery. This study converts hazardous graphite from the black mass (NMC 111) of spent LiBs into functional activated carbons (ACs) via KOH activation. Tailoring the synthesis at 800 °C and a graphite-to-KOH ratio of 1:6 produced AC with a surface area of 678 m<sup>2</sup>/g and a total pore volume of 0.442 cm<sup>3</sup>/g. The material showed a balanced micropore–mesopore structure, with micropores contributing 53 % of the total pore volume. The material showed a balanced micropore–mesopore structure, with micropores contributing 53 % of the total volume. XRD confirmed preserved graphitic crystallinity with a dominant (002) peak at 26.52°. Raman spectroscopy indicated increased defect density (I<sub>D</sub>/I<sub>G</sub> = 1.053), facilitating porosity formation. SEM and TEM revealed a transition from smooth graphite layers to a porous, defect-rich structure, with TEM highlighting mesopore-like voids and distorted graphitic domains featuring edge defects. XPS identified surface modifications, including a higher proportion of sp<sup>2</sup> carbon and oxygen-containing groups (C–O, C=O, C-OH, CO<sub>3</sub><sup>2−</sup>). TGA demonstrated stability (∼900 °C) under inert conditions and enhanced reactivity in oxidative environments. This work valorizes LiB-derived graphite waste into ACs, supporting circular economy strategies and demonstrating potential for industrial scalability.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"254 \",\"pages\":\"Article 114073\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127525004939\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525004939","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(LiBs)在能源存储领域的迅速应用推动了对资源回收的研究。本研究通过KOH活化将废lib黑团(NMC 111)中的有害石墨转化为功能活性炭(ACs)。在800°C、石墨与koh的比例为1:6的条件下合成,得到的AC的表面积为678 m2/g,总孔体积为0.442 cm3/g。该材料呈现微孔-中孔平衡结构,微孔占总孔隙体积的53%。该材料具有微孔-中孔平衡结构,微孔占总体积的53%。XRD证实石墨结晶度保存完好,在26.52°处有一个主导峰(002)。拉曼光谱显示缺陷密度增加(ID/IG = 1.053),有利于孔隙的形成。SEM和TEM显示了从光滑石墨层到多孔,富含缺陷的结构的转变,TEM突出了介孔样空隙和具有边缘缺陷的扭曲石墨畴。XPS发现了表面修饰,包括更高比例的sp2碳和含氧基团(C -O, C=O, C- oh, CO32−)。TGA在惰性条件下表现出稳定性(~ 900°C),在氧化环境中表现出增强的反应性。这项工作将锂衍生的石墨废料转化为活性炭,支持循环经济战略,并展示了工业可扩展性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Valorization of hazardous graphite from black mass (NMC 111) of lithium-ion battery recycling via KOH activation for functional carbon design
The rapid adoption of lithium-ion batteries (LiBs) in energy storage has driven research into resource recovery. This study converts hazardous graphite from the black mass (NMC 111) of spent LiBs into functional activated carbons (ACs) via KOH activation. Tailoring the synthesis at 800 °C and a graphite-to-KOH ratio of 1:6 produced AC with a surface area of 678 m2/g and a total pore volume of 0.442 cm3/g. The material showed a balanced micropore–mesopore structure, with micropores contributing 53 % of the total pore volume. The material showed a balanced micropore–mesopore structure, with micropores contributing 53 % of the total volume. XRD confirmed preserved graphitic crystallinity with a dominant (002) peak at 26.52°. Raman spectroscopy indicated increased defect density (ID/IG = 1.053), facilitating porosity formation. SEM and TEM revealed a transition from smooth graphite layers to a porous, defect-rich structure, with TEM highlighting mesopore-like voids and distorted graphitic domains featuring edge defects. XPS identified surface modifications, including a higher proportion of sp2 carbon and oxygen-containing groups (C–O, C=O, C-OH, CO32−). TGA demonstrated stability (∼900 °C) under inert conditions and enhanced reactivity in oxidative environments. This work valorizes LiB-derived graphite waste into ACs, supporting circular economy strategies and demonstrating potential for industrial scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信