通过纳米孔隙度调整InTe膜的热力学性能:分子动力学方法

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Mohamed Saaoud , Fatima Zahra Zanane , Lalla Btissam Drissi
{"title":"通过纳米孔隙度调整InTe膜的热力学性能:分子动力学方法","authors":"Mohamed Saaoud ,&nbsp;Fatima Zahra Zanane ,&nbsp;Lalla Btissam Drissi","doi":"10.1016/j.physb.2025.417336","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular dynamics simulations reveal how nanoporosity (0–20.1%) and temperature critically influence indium telluride (InTe) membranes for nanoelectronic applications. Mechanical properties degrade progressively with porosity: Young’s modulus declines from 43.5 GPa (pristine) by 9.7–37.9% across 2.32–20.1% porosity, while ultimate strength shows anisotropic reduction (21.4–50.0% zigzag, 32.8–61.2% armchair). Thermal conductivity drops 49.5% (40.36 to 20.4 W/m K) at 20.1% porosity due to phonon scattering, yet increases 68.4–85.4% with system length scaling (38 to 152 nm). Temperature induces fracture mode switching from zigzag to armchair propagation and exacerbates phonon-defect interactions. The observed length-dependent thermal enhancement suggests nanostructuring as an effective compensation strategy for porosity-induced losses. This work provides a computational framework for tailoring InTe membranes to specific application requirements, balancing structural integrity against thermal management needs in nanoelectronics and energy conversion devices.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417336"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring thermal and mechanical properties of InTe membranes through nanoporosity: A molecular dynamics approach\",\"authors\":\"Mohamed Saaoud ,&nbsp;Fatima Zahra Zanane ,&nbsp;Lalla Btissam Drissi\",\"doi\":\"10.1016/j.physb.2025.417336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular dynamics simulations reveal how nanoporosity (0–20.1%) and temperature critically influence indium telluride (InTe) membranes for nanoelectronic applications. Mechanical properties degrade progressively with porosity: Young’s modulus declines from 43.5 GPa (pristine) by 9.7–37.9% across 2.32–20.1% porosity, while ultimate strength shows anisotropic reduction (21.4–50.0% zigzag, 32.8–61.2% armchair). Thermal conductivity drops 49.5% (40.36 to 20.4 W/m K) at 20.1% porosity due to phonon scattering, yet increases 68.4–85.4% with system length scaling (38 to 152 nm). Temperature induces fracture mode switching from zigzag to armchair propagation and exacerbates phonon-defect interactions. The observed length-dependent thermal enhancement suggests nanostructuring as an effective compensation strategy for porosity-induced losses. This work provides a computational framework for tailoring InTe membranes to specific application requirements, balancing structural integrity against thermal management needs in nanoelectronics and energy conversion devices.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"713 \",\"pages\":\"Article 417336\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625004533\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004533","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

分子动力学模拟揭示了纳米孔隙度(0-20.1%)和温度如何严重影响碲化铟(InTe)薄膜的纳米电子应用。力学性能随着孔隙率的增加而逐渐降低:在孔隙率为2.32-20.1%时,杨氏模量从43.5 GPa(原始)下降了9.7-37.9%,而极限强度则呈现各向异性降低(锯齿形降低21.4-50.0%,锯齿形降低32.8-61.2%)。当孔隙率为20.1%时,由于声子散射,导热系数下降49.5% (40.36 ~ 20.4 W/m K),但随着系统长度缩放(38 ~ 152 nm),导热系数增加68.4 ~ 85.4%。温度导致断裂模式从之字形向扶手椅型转换,并加剧声子-缺陷相互作用。观察到的与长度相关的热增强表明,纳米结构是一种有效的补偿孔隙性损失的策略。这项工作提供了一个计算框架,用于定制InTe膜以满足特定的应用需求,平衡纳米电子和能量转换设备的结构完整性和热管理需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring thermal and mechanical properties of InTe membranes through nanoporosity: A molecular dynamics approach
Molecular dynamics simulations reveal how nanoporosity (0–20.1%) and temperature critically influence indium telluride (InTe) membranes for nanoelectronic applications. Mechanical properties degrade progressively with porosity: Young’s modulus declines from 43.5 GPa (pristine) by 9.7–37.9% across 2.32–20.1% porosity, while ultimate strength shows anisotropic reduction (21.4–50.0% zigzag, 32.8–61.2% armchair). Thermal conductivity drops 49.5% (40.36 to 20.4 W/m K) at 20.1% porosity due to phonon scattering, yet increases 68.4–85.4% with system length scaling (38 to 152 nm). Temperature induces fracture mode switching from zigzag to armchair propagation and exacerbates phonon-defect interactions. The observed length-dependent thermal enhancement suggests nanostructuring as an effective compensation strategy for porosity-induced losses. This work provides a computational framework for tailoring InTe membranes to specific application requirements, balancing structural integrity against thermal management needs in nanoelectronics and energy conversion devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信