非平衡立方晶体中偶极相互作用的分析

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
R. Dutta, F. Castles, Y. Hao
{"title":"非平衡立方晶体中偶极相互作用的分析","authors":"R. Dutta,&nbsp;F. Castles,&nbsp;Y. Hao","doi":"10.1016/j.physb.2025.417287","DOIUrl":null,"url":null,"abstract":"<div><div>An alternative methodology is utilized for exploring the impact of mutual interactions between dipolarizable entities with negative static polarizability on the stability of nonequilibrium systems. This approach aims to confirm the minimum allowable limits of the static electric susceptibility determined by the ‘finite crystal method’. In this paper, a classical microscopic model is adopted for point-like dipolarizable entities (a model commonly used for positive polarizability). The study employs the infinite crystal method to explore the behavior of this model within cubic crystals focussing on scenarios involving one entity per primitive cell, where the entities exhibit negative static polarizability. An advantageous aspect of this method is its capability to formulate expressions for the polarizability of any crystal by representing them as infinite lattice sums derived from the plots in reciprocal space.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417287"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of dipole interactions in nonequilibrium cubic crystals\",\"authors\":\"R. Dutta,&nbsp;F. Castles,&nbsp;Y. Hao\",\"doi\":\"10.1016/j.physb.2025.417287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An alternative methodology is utilized for exploring the impact of mutual interactions between dipolarizable entities with negative static polarizability on the stability of nonequilibrium systems. This approach aims to confirm the minimum allowable limits of the static electric susceptibility determined by the ‘finite crystal method’. In this paper, a classical microscopic model is adopted for point-like dipolarizable entities (a model commonly used for positive polarizability). The study employs the infinite crystal method to explore the behavior of this model within cubic crystals focussing on scenarios involving one entity per primitive cell, where the entities exhibit negative static polarizability. An advantageous aspect of this method is its capability to formulate expressions for the polarizability of any crystal by representing them as infinite lattice sums derived from the plots in reciprocal space.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"713 \",\"pages\":\"Article 417287\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625004041\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004041","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

另一种方法被用于探索具有负静态极化率的偶极化实体之间的相互作用对非平衡系统稳定性的影响。该方法旨在确定由“有限晶体法”确定的静电磁化率的最小允许极限。本文对点状双极化实体(正极化率常用的模型)采用经典微观模型。该研究采用无限晶体方法来探索该模型在立方晶体中的行为,重点关注涉及每个原始细胞一个实体的场景,其中实体表现出负的静态极化率。这种方法的一个优点是它能够通过将任何晶体的极化率表示为从倒易空间中导出的无限晶格和来表达它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of dipole interactions in nonequilibrium cubic crystals
An alternative methodology is utilized for exploring the impact of mutual interactions between dipolarizable entities with negative static polarizability on the stability of nonequilibrium systems. This approach aims to confirm the minimum allowable limits of the static electric susceptibility determined by the ‘finite crystal method’. In this paper, a classical microscopic model is adopted for point-like dipolarizable entities (a model commonly used for positive polarizability). The study employs the infinite crystal method to explore the behavior of this model within cubic crystals focussing on scenarios involving one entity per primitive cell, where the entities exhibit negative static polarizability. An advantageous aspect of this method is its capability to formulate expressions for the polarizability of any crystal by representing them as infinite lattice sums derived from the plots in reciprocal space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信