基于深度可分群等变cnn增强太阳能光伏故障分类的鲁棒性

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jielong Guo , Chak Fong Chong , Pedro Henriques Abreu , Chao Mao , Chan-Tong Lam , Benjamin K. Ng
{"title":"基于深度可分群等变cnn增强太阳能光伏故障分类的鲁棒性","authors":"Jielong Guo ,&nbsp;Chak Fong Chong ,&nbsp;Pedro Henriques Abreu ,&nbsp;Chao Mao ,&nbsp;Chan-Tong Lam ,&nbsp;Benjamin K. Ng","doi":"10.1016/j.aej.2025.04.063","DOIUrl":null,"url":null,"abstract":"<div><div>Solar photovoltaic (PV) power generation has experienced significant growth and thermal infrared (IR) imaging via unmanned aerial vehicles (UAVs) has become an efficient method for inspecting large-scale PV plants. However, variations in UAV flight paths and weather conditions cause orientation changes, luminance variations, and increased noise, challenging the robustness of fault classification models. This study introduces <em>p4(m)</em> depthwise separable group equivariant convolution module to address these challenges. The proposed models offer advantages in terms of model size, parameter count, fault classification performance, and robustness for solar PV panel images. Without data augmentation, the proposed model achieves 84.0% accuracy for the 12-Class task and 75.0% for the 11-Class task on the Infrared Solar Module dataset. Compared to data augmentation-based methods, the proposed model shows 1.7% higher accuracy in the 12-Class task and 4.2% in the 11-Class task. Additionally, the proposed model achieves a 7.3% improvement over non-augmented ensemble models in the 12-Class task, while maintaining model size and parameters below 20% of baseline models. Robustness evaluation reveals significant accuracy improvements under real-world image transformations: 9.25% for rotational changes, 8.66% for luminance variations, and 28.37% for noise interference. These results demonstrate the model’s effectiveness in handling challenging conditions while maintaining computational efficiency.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 486-499"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the robustness of solar photovoltaic fault classification based on depthwise separable group equivariant CNNs\",\"authors\":\"Jielong Guo ,&nbsp;Chak Fong Chong ,&nbsp;Pedro Henriques Abreu ,&nbsp;Chao Mao ,&nbsp;Chan-Tong Lam ,&nbsp;Benjamin K. Ng\",\"doi\":\"10.1016/j.aej.2025.04.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar photovoltaic (PV) power generation has experienced significant growth and thermal infrared (IR) imaging via unmanned aerial vehicles (UAVs) has become an efficient method for inspecting large-scale PV plants. However, variations in UAV flight paths and weather conditions cause orientation changes, luminance variations, and increased noise, challenging the robustness of fault classification models. This study introduces <em>p4(m)</em> depthwise separable group equivariant convolution module to address these challenges. The proposed models offer advantages in terms of model size, parameter count, fault classification performance, and robustness for solar PV panel images. Without data augmentation, the proposed model achieves 84.0% accuracy for the 12-Class task and 75.0% for the 11-Class task on the Infrared Solar Module dataset. Compared to data augmentation-based methods, the proposed model shows 1.7% higher accuracy in the 12-Class task and 4.2% in the 11-Class task. Additionally, the proposed model achieves a 7.3% improvement over non-augmented ensemble models in the 12-Class task, while maintaining model size and parameters below 20% of baseline models. Robustness evaluation reveals significant accuracy improvements under real-world image transformations: 9.25% for rotational changes, 8.66% for luminance variations, and 28.37% for noise interference. These results demonstrate the model’s effectiveness in handling challenging conditions while maintaining computational efficiency.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"127 \",\"pages\":\"Pages 486-499\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825005599\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005599","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太阳能光伏(PV)发电经历了显着的增长,通过无人机(uav)进行热红外(IR)成像已成为检查大型光伏电站的有效方法。然而,无人机飞行路径和天气条件的变化会导致方向变化、亮度变化和噪声增加,这对故障分类模型的鲁棒性提出了挑战。本研究引入p4(m)深度可分群等变卷积模块来解决这些挑战。所提出的模型在模型大小、参数数量、故障分类性能和对太阳能光伏板图像的鲁棒性方面具有优势。在没有数据增强的情况下,该模型对红外太阳能模块数据集的12类任务和11类任务的准确率分别达到84.0%和75.0%。与基于数据增强的方法相比,该模型在12类任务上的准确率提高1.7%,在11类任务上的准确率提高4.2%。此外,该模型在12类任务中比非增强集成模型实现了7.3%的改进,同时将模型大小和参数保持在基线模型的20%以下。鲁棒性评估显示,在真实世界的图像变换下,精度显著提高:旋转变化提高了9.25%,亮度变化提高了8.66%,噪声干扰提高了28.37%。这些结果证明了该模型在处理具有挑战性的条件时的有效性,同时保持了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the robustness of solar photovoltaic fault classification based on depthwise separable group equivariant CNNs
Solar photovoltaic (PV) power generation has experienced significant growth and thermal infrared (IR) imaging via unmanned aerial vehicles (UAVs) has become an efficient method for inspecting large-scale PV plants. However, variations in UAV flight paths and weather conditions cause orientation changes, luminance variations, and increased noise, challenging the robustness of fault classification models. This study introduces p4(m) depthwise separable group equivariant convolution module to address these challenges. The proposed models offer advantages in terms of model size, parameter count, fault classification performance, and robustness for solar PV panel images. Without data augmentation, the proposed model achieves 84.0% accuracy for the 12-Class task and 75.0% for the 11-Class task on the Infrared Solar Module dataset. Compared to data augmentation-based methods, the proposed model shows 1.7% higher accuracy in the 12-Class task and 4.2% in the 11-Class task. Additionally, the proposed model achieves a 7.3% improvement over non-augmented ensemble models in the 12-Class task, while maintaining model size and parameters below 20% of baseline models. Robustness evaluation reveals significant accuracy improvements under real-world image transformations: 9.25% for rotational changes, 8.66% for luminance variations, and 28.37% for noise interference. These results demonstrate the model’s effectiveness in handling challenging conditions while maintaining computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信