给定阶边环图的最小尺寸和最大直径

IF 0.7 3区 数学 Q2 MATHEMATICS
Chengli Li, Feng Liu, Xingzhi Zhan
{"title":"给定阶边环图的最小尺寸和最大直径","authors":"Chengli Li,&nbsp;Feng Liu,&nbsp;Xingzhi Zhan","doi":"10.1016/j.disc.2025.114576","DOIUrl":null,"url":null,"abstract":"<div><div>A <em>k</em>-cycle in a graph is a cycle of length <em>k</em>. A graph <em>G</em> of order <em>n</em> is called edge-pancyclic if for every integer <em>k</em> with <span><math><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>, every edge of <em>G</em> lies in a <em>k</em>-cycle. We give lower and upper bounds on the minimum size of a simple edge-pancyclic graph of a given order, and determine the maximum diameter of such a graph. In the 3-connected case, the precise minimum size is determined. We also determine the minimum size of a graph of a given order with connectivity conditions in which every edge lies in a triangle.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114576"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The minimum size and maximum diameter of an edge-pancyclic graph of a given order\",\"authors\":\"Chengli Li,&nbsp;Feng Liu,&nbsp;Xingzhi Zhan\",\"doi\":\"10.1016/j.disc.2025.114576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <em>k</em>-cycle in a graph is a cycle of length <em>k</em>. A graph <em>G</em> of order <em>n</em> is called edge-pancyclic if for every integer <em>k</em> with <span><math><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>, every edge of <em>G</em> lies in a <em>k</em>-cycle. We give lower and upper bounds on the minimum size of a simple edge-pancyclic graph of a given order, and determine the maximum diameter of such a graph. In the 3-connected case, the precise minimum size is determined. We also determine the minimum size of a graph of a given order with connectivity conditions in which every edge lies in a triangle.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114576\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001840\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001840","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图中的k环是一个长度为k的环。如果对于3≤k≤n的每一个整数k, G的每条边都在k环中,则称图G为n阶的边环。给出了给定阶的简单边环图的最小尺寸的下界和上界,并确定了这种图的最大直径。在3连接的情况下,确定了精确的最小尺寸。我们还确定了给定顺序的图的最小尺寸,其中每个边都位于三角形中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The minimum size and maximum diameter of an edge-pancyclic graph of a given order
A k-cycle in a graph is a cycle of length k. A graph G of order n is called edge-pancyclic if for every integer k with 3kn, every edge of G lies in a k-cycle. We give lower and upper bounds on the minimum size of a simple edge-pancyclic graph of a given order, and determine the maximum diameter of such a graph. In the 3-connected case, the precise minimum size is determined. We also determine the minimum size of a graph of a given order with connectivity conditions in which every edge lies in a triangle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信